Leçons d'analyse old : Différence entre versions

De AgregmathKL
Aller à : navigation, rechercher
m
m
Ligne 1 : Ligne 1 :
/!\ Ces leçons sont celles de l'année dernière. (Pour l'instant...)
+
==== /!\ Ces leçons sont celles de l'année dernière. (Pour l'instant...) ====
  
 
[[201 -- Espaces de fonctions. Exemples et applications.]]
 
[[201 -- Espaces de fonctions. Exemples et applications.]]

Version du 28 décembre 2010 à 21:24

/!\ Ces leçons sont celles de l'année dernière. (Pour l'instant...)

201 -- Espaces de fonctions. Exemples et applications.

202 -- Exemples de parties denses et applications.

203 -- Utilisation de la notion de compacité.

204 -- Connexité. Exemples et applications.

205 -- Espaces complets. Exemples et applications.

206 -- Théorèmes de point fixe.

207 -- Prolongement de fonctions. Exemples et applications.

208 -- Espaces vectoriels normés, applications linéaires continues. Exemples

213 -- Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.

214 -- Théorème d'inversion locale, théorème des fonctions implicites. Exemples et applications.

215 -- Applications différentiables définies sur un ouvert de Rn. Exemples et applications.

216 -- Études métriques de courbes. Exemples.

217 -- Sous-variétés de Rn

218 -- Applications des formules de Taylor.

219 -- Problèmes d'extremums.

220 -- Équations différentielles X' = f(t,X) ; exemples d'études qualitatives des solutions.

221 -- Équations différentielles linéaires, systèmes d'équations différentielles linéaires. Exemples et applications.

223 -- Convergence des suites numériques. Exemples et applications.

224 -- Comportement asymptotique des suites numériques. Rapidité de convergence. Exemples.

225 -- Étude locale de surfaces. Exemples.

226 -- Comportement d'une suite réelle ou vectorielle définie par une itération u_n+1 = f(u_n). Exemples.

228 -- Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.

229 -- Fonctions monotones. Fonctions convexes. Exemples et applications.

230 -- Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.

232 -- Méthodes d'approximation des solutions d'une équation F(x)=0. Exemples.

234 -- Espaces L^p, 1 ≤ p ≤ +∞.

235 -- Suites et séries de fonctions intégrables. Exemples et applications.

236 -- Illustrer par des exemples quelques méthodes de calculs d'intégrales de fonctions d'une ou plusieurs variables réelles.

238 -- Méthodes de calcul approché d'intégrales.

239 -- Fonctions définies par une intégrale dépendant d'un paramètre.

240 -- Transformation de Fourier, produit de convolution. Applications.

241 -- Suites et séries de fonctions. Exemples et contre-exemples.

242 -- Utilisation en probabilités de la transformation de Fourier ou de Laplace et du produit de convolution.

243 -- Convergence des séries entières, propriétés de la somme. Exemples et applications.

245 -- Fonctions holomorphes et méromorphes sur un ouvert de C.

246 -- Séries de Fourier. Exemples et applications.

247 -- Exemples de problèmes d'interversion de limites.

249 -- Suites de variables de Bernoulli indépendantes.

250 -- Loi des grands nombres. Théorème limite central. Applications.

251 -- Indépendance d'événements et de variables aléatoires. Exemples.

252 -- Loi binomiale, loi de Poisson. Applications.