240 -- Produit de convolution, transformation de Fourier. Applications.

De AgregmathKL
Aller à : navigation, rechercher

Plans

Pdf Plan scanné de l'année 2013-2014

Pdf Plan scanné de l'année 2014-2015

Pdf Plan scanné de l'année 2015-2016

Autre plan

Voici le plan que j'envisage:

Convolution

Définitions

Le cas général d'existence semble porter le nom de théorème de Young.

Régulariastion et approximation

On énonce un théorème qui dit que la convolée garde la régularité de la fonction la plus régulière. Approximations de l'unité. Théorèmes de densité.

Transformation de Fourier

Dans L^{1}(R), lien avec la convolution. Formule sommatoire de Poisson

Dans l'espace de Schwartz, inversion, prolongement à L^{2}(R)

Application à l'équation de la chaleur

Extension de la transformation de Fourier aux distributions tempérées

Définition de l'espace S'(R)

Transformation de Fourier dans S'(R), applications à la résolution d'une EDP

Rien de bien original, certes.

Commentaires

Selon Laurent Guillopé (jury aux oraux blancs), il faut savoir calculer la transformée de Fourier :

  • d'une fonction constante ;
  • d'une fonction créneau (fontion caractéristique de {\mathbb  {R}}^{+}) : cela donne l'exemple d'une fonction analytique non L^{1} ;
  • de la Gaussienne ;
  • de x\mapsto {\frac  {1}{1+x^{2}}} ;
  • de x\mapsto e^{{-|x|}} (ces deux dernières étant reliées).

Leçon remplacées en 2016 par la 250 -- Transformation de Fourier. Applications