Formule d'inversion de Fourier

De AgregmathKL
Révision de 17 janvier 2015 à 20:43 par Mathias Millet (discuter | contributions) (Remplacement de texte — « link=Média:(.*)\.tex » par « link={{filepath:$1.tex}} »)

Aller à : navigation, rechercher

Recasage :

  • Version dans {\mathcal  S}({\mathbb  R}) : Pdf
  • Version dans L^{1}({\mathbb  R}) avec les approximations de l'unité : Tex,Pdf

On remarque en fait a posteriori que la version dans {\mathcal  S}({\mathbb  R}) n'est pas plus faible que celle dans L^{1}({\mathbb  R}) (une fois qu'on a cette deuxième version). En effet, dans la version {\mathcal  S}({\mathbb  R}), les seules hypothèses sur f qu'on utilise est son intégrabilité, sa continuité et son caractère borné (ces deux dernières hypothèses sont nécessaires pour appliquer le théorème de convergence dominée à la fin). Or la transformée de Fourier d'une fonction L^{1} est justement continue et bornée donc, en appliquant la formule d'inversion, on remarque que si f et {\hat  f} sont dans L^{1}, alors f est continue (presque partout) et bornée. On ne perd donc rien à supposer au départ que f est continue et bornée.