Exos classiques et autres démonstrations

De AgregmathKL
Aller à : navigation, rechercher

Algèbre

Calculer l'exponentielle d'une matrice diagonalisable sans calculer la matrice de passage

Soit A\in {\mathcal  {M}}_{n}({\mathbb  {C}}). soit D=diag(\lambda _{1},\dots ,\lambda _{n}) telle que A=Q^{{-1}}DQ.

Soit P un polynôme tel que P(\lambda _{i})=e^{{\lambda _{i}}} pour tout i.

Alors P(A)=P(Q^{{-1}}DQ)=Q^{{-1}}P(D)Q=Q^{{-1}}\exp(D)Q=\exp(A) !


Ref : perso.univ-rennes1.fr/tristan.vaccon/exponentielle_de_matrices.pdf‎

Pseudo-réduction simultanée

Pdf

Tex

Racine carrée d'une matrice symétrique réelle positive

Pdf

Tex

Calcul des projecteurs sur les sous-espaces caractéristiques d'un endomorphisme

On donne ici une méthode pour calculer les projecteurs sur les sous-espaces caractéristiques d'un endomorphismes, ainsi qu'une application au calcul de l'exponentielle matricielle par la décomposition de Dunford.

Pdf

Tex

Une famille d'endomorphismes diagonalisables qui commutent est codiagonalisable

Pdf

Tex

Expression d'un polynôme symétrique en fonction des polynômes symétriques élémentaires

Pdf

Tex

Analyse