105 -- Groupe des permutations d'un ensemble fini. Applications.

De AgregmathKL
Aller à : navigation, rechercher

Plans

Pdf Plan scanné de l'année 2012-2013

Pdf Plan scanné de l'année 2013-2014

Pdf Plan scanné de l'année 2014-2015

Pdf Plan scanné de l'année 2016-2017

Pdf Plan scanné de l'année 2017-2018

Pdf Plan scanné de l'année 2018-2019

Pdf Plan scanné de l'année 2019-2020


Développements


Exercices posés lors de la présentation

Pdf Pdf Exercices proposés en 2013


Divers

Une idée en l'air, qui est transmise par Vladimir Arnold sur http://www.irem.univ-paris-diderot.fr/videos/la_mathematique_experimentale/ (excellente conférence au demeurant) : la notion de groupe de permutations est la "vraie" définition (si on voit ledit ensemble comme géométrique), la définition axiomatique n'est finalement pas très maniable. Et le théorème de Cayley (un groupe s'identifie comme sous-ensemble du groupe de permutation d'un ensemble fini) est là pour nous dire qu'il n'y a justement rien de plus que ces permutations. Idée qu'il s'agit de faire ressortir dans la défense du plan, à mon sens. (Simon)

Des illustrations pour les leçons de groupes