105 -- Groupe des permutations d'un ensemble fini. Applications.
Plans
Plan scanné de l'année 2012-2013
Plan scanné de l'année 2013-2014
Plan scanné de l'année 2014-2015
Plan scanné de l'année 2016-2017
Plan scanné de l'année 2017-2018
Plan scanné de l'année 2018-2019
Plan scanné de l'année 2019-2020
Développements
- Théorème de Brauer
- Simplicité de An
- Sous-groupes finis de SO(3)
- Théorème de Frobenius-Zolotarev
- Décomposition de Bruhat
Exercices posés lors de la présentation
Divers
Une idée en l'air, qui est transmise par Vladimir Arnold sur http://www.irem.univ-paris-diderot.fr/videos/la_mathematique_experimentale/ (excellente conférence au demeurant) : la notion de groupe de permutations est la "vraie" définition (si on voit ledit ensemble comme géométrique), la définition axiomatique n'est finalement pas très maniable. Et le théorème de Cayley (un groupe s'identifie comme sous-ensemble du groupe de permutation d'un ensemble fini) est là pour nous dire qu'il n'y a justement rien de plus que ces permutations. Idée qu'il s'agit de faire ressortir dans la défense du plan, à mon sens. (Simon)