Irréductibilité des polynômes cyclotomiques sur Q

Arnaud GIRAND

11 décembre 2011

Référence :

- [Gou94], p. 92 - 94

Leçons:

- 113 Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.
- 112 Corps finis. Applications.
- $-\,$ 116 Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications. Prérequis :
 - polynômes cyclotomiques.

Soit $n \geq 1$. Dans toute la suite on notera ϕ_n le n-ième polynôme cyclotomique sur \mathbb{C} . On rappelle que :

$$X^n - 1 = \prod_{d|n} \phi_d$$

Proposition 1

 ϕ_n est irréductible sur \mathbb{Q} .

DÉMONSTRATION : Comme $\mathbb{Q}[X]$ est factoriel (car \mathbb{Q} l'est 1), il existe un (unique) r-uplet $(G_1, \ldots, G_r) \in \mathbb{Q}[X]^n$ tel que :

$$\phi_n = \prod_{i=1}^r G_i$$

De plus, à $i \in [r]$ fixé, il existe $\alpha_i \in \mathbb{N}^*$ tel que $\alpha_i G_i \in \mathbb{Z}[X]$ (prendre le ppcm des coefficients de G_i , par exemple). De fait :

$$\left(\prod_{i=1}^{r} \alpha_i\right) \phi_n = \prod_{i=1}^{r} \alpha_i G_i$$

D'après le lemme de Gauss (lemme 2), on a alors (la première égalité découlant du fait que ϕ_n est unitaire) :

$$\prod_{i=1}^{r} \alpha_i = c\left(\left(\prod_{i=1}^{r} \alpha_i\right) \phi_n\right) = \prod_{i=1}^{r} c(\alpha_i G_i)$$

Posons pour $i \in [r]$ $F_i := \frac{\alpha_i G_i}{c(\alpha_i G_i)}$. Alors:

$$\forall i \in [r], F_i \in \mathbb{Z}[X]$$
 est unitaire et irréductible sur \mathbb{Q} et $\phi_n = \prod_{i=1}^r F_i$

On se maintenant propose de démontrer par récurrence sur $s \geq 1$ la propriété suivante : pour tout entier $s \geq 1$, pour tout entier k premier avec n de décomposition en produit de facteurs premiers $k = p_1 \dots p_s$ et pour toute racine $k \in k$, on a $k \in k$.

^{1.} C'est un corps!

^{2.} Notons qu'alors aucun des p_i ne peut diviser n.

- s=1. Soit ξ une racine de F_1 et soit p un nombre premier tel que $p \nmid n$. On se propose de montrer que $F_1(\xi^p)=0$. Pour commencer, remarquons que ξ est une racine de ϕ_n donc une racine primitive n-ième de l'unité. Comme $p \wedge n=1$, ξ^p est également un racine primitive n-ième de l'unité donc une racine de ϕ_n , ergo il existe $i \in [r]$ tel que $F_i(\xi^p)=0$ Supposons à présent que $F_1(X)$ et $F_i(X^p)$ soient premiers entre eux dans $\mathbb{Q}[X]$. Alors (lemme de Bézout) :

$$\exists U, V \in \mathbb{Q}[X], \quad U(X)F_1(X) + V(X)F_i(X^p) = 1$$

En évaluant cette égalité en " $X = \xi$ ", on obtient la contradiction 1 = 0. Or F_1 est irréductible sur $\mathbb Q$ donc on a nécessairement $F_1(X)|F_i(X^p)$ dans $\mathbb Q[X]$. Comme le coefficient dominant de F_1 est inversible dans $\mathbb Z$ on a de plus que $F_1(X)|F_i(X^p)$ dans $\mathbb Z[X]$ (même raisonnement que dans l'hérédité du lemme 1). Si on note, pour $P \in \mathbb Z[X]$, $\overline{P} \in \mathbb F_p[X]$ la classe de P modulo p, on a alors $\overline{F_1}(X)|\overline{F_i}(X^p) = \overline{F_i}(X)^p$ dans $\mathbb F_p[X]$.

Soit à présent $\overline{P} \in \mathbb{F}_p[X]$ un facteur irréductible de $\overline{F_1}$ sur \mathbb{F}_p . Alors $\overline{P} \mid \overline{F_i}^p$ donc par irréductibilité $\overline{P} \mid \overline{F_i}$ et donc si $i \neq 1$ $\overline{P}^2 \mid \overline{\phi_n}$. Posons :

$$R := \prod_{d|n,\, d \neq n} \phi_d$$

Alors $X^n - 1 = \phi_n R$ et donc $X^n - \overline{1} = \overline{P}^2 \overline{S}$, où S = PR. En dérivant (formellement) cette égalité on obtient que $\overline{n}X^{n-} = 2\overline{PQ'} + \overline{P}^2 \overline{S'}$, ergo $\overline{P}|\overline{n}X^{n-1}|$ dans $\mathbb{F}_p[X]$. Or $\overline{P}|X^n - \overline{1}|\overline{n}X^n - \overline{n}|$ ainsi par différence $\overline{P}|\overline{n} \neq 0$ donc \overline{P} est constant ce qui est absurde. In fine $F_1(\xi^p) = 0$.

- Supposons la propriété vérifiée au rang $s \ge 1$. Soit ξ une racine de F_1 et $k = p_1 \dots p_{s+1}$ un entier premier avec n. Alors l'entier $p_1 \dots p_s$ l'est également et donc par hypothèse de récurrence $F_1(\xi^{p_1 \dots p_s}) = 0$. De plus $p_{s+1} \wedge n = 1$ (car $p_{s+1} \nmid n$) donc comme la propriété est vraie au rang 1 et que $\xi^{p_1 \dots p_s}$ est une racine de F_1 on a $F(\xi^{(p_1 \dots p_s)p_{s+1}}) = 0$, d'où le résultat.

Pour conclure, fixons une racine ξ de F_1 . Alors ξ est une racine de ϕ_n et donc $\mu_n^*(\mathbb{C}) = \{\xi^k \mid k \land n = 1\}$. De fait, les racines de ϕ_n sont comprises dans celles de F_1 donc $\phi_n|F_1$. Or $F_1|\phi_n$ et ces deux polynômes sont élémentaires ergo $F_1 = \phi_n$, d'où le résultat.

Détails supplémentaires :

- Présentons d'abord un lemme sans lequel notre développement n'a pas grand sens :

Lemme 1

 $\phi_n \in \mathbb{Z}[X].$

DÉMONSTRATION : On le démontre par récurrence sur $n \geq 1$.

- $-n = 1. \ \phi_1 = (X 1) \in \mathbb{Z}[X].$
- Supposons la propriété validée pour tous $k \leq n$, avec $n \geq 1$. Alors, par hypothèse de récurrence :

$$P := \prod_{d|n+1, d < n+1} \phi_d \in \mathbb{Z}[X]$$

De plus, $X^{n+1}-1=P\phi_{n+1}$. P est de coefficient dominant inversible dans \mathbb{Z} donc il existe $Q,R\in\mathbb{Z}[X]$ tels que $X^{n+1}-1=PQ+R$, avec $\deg(R)<\deg(P)$. Par division euclidienne, de tels Q,R sont uniques dans $\mathbb{C}[X]$ donc dans $\mathbb{Z}[X]$ et donc R=0 et $Q=\phi_{n+1}$, d'où le résultat.

- On trouve le résultat suivant dans [Gou94], p.58 :

Lemme 2 (Gauss)

Soient $P, Q \in \mathbb{Z}[X]$.

Alors c(PQ) = c(P)c(Q).

DÉMONSTRATION : Posons $P_1 := \frac{1}{c(P)} P$ et $Q_1 := \frac{1}{c(Q)} Q$. Alors $P_1, Q_1 \in \mathbb{Z}[X]$ et $c(P_1) = c(Q_1) = 1$.

Supposons $c(P_1Q_1) > 1$. Alors il existe un nombre premier p divisant $c(P_1Q_1)$, donc divisant tous les coefficients de P. De fait on a, dans $\mathbb{F}_p[X]$:

$$\overline{P_1Q_1} = \overline{P_1Q_1} = \overline{0}$$

^{3.} Car $\mathbb Q$ est un corps donc distinct de l'anneau trivial.

^{4.} On se souviendra que si P est irréductible sur $\mathbb Z$ il l'est modulo tout nombre premier.

Comme $\mathbb{F}[X]$ est intègre, on a donc que p divise tous les coefficients de P_1 ou tous les coefficients de Q_1 , ce qui est impossible. Ainsi $c(P_1Q_1) = 1$. In fine :

$$c(PQ) = c(P)c(Q)c(P_1Q_1) = c(P)c(Q)$$

- Soit \mathbb{K} un corps et soit $\xi \in \mu_n^*(\mathbb{K})$. Alors par définition $\{\xi^k \mid k \in \mathbb{N}\} = \mu_n(\mathbb{K})$. De plus, si on se donne k premier avec n et que l'on suppose qu'il existe j < n tel que $(\xi^k)^j = 1$ alors par théorème de Lagrange appliqué à ξ dans le groupe $\mu_n(\mathbb{K})$, n|kj et donc comme $k \wedge n = 1$ par lemme de Gauss on a que n|j, ce qui est impossible. Donc $\{\xi^k \mid k \wedge n = 1\} \subset \mu_n^*(\mathbb{K})$. Réciproquement si k et n ont un diviseur commun non trivial u, avec $n = un_1$ et $k = uk_1$, alors $(\xi^k)_1^n = \xi^{uk_1n_1} = \xi^{nk_1} = 1$, avec $n_1 < n$ ergo $\xi^k \notin \mu_n^*(\mathbb{K})$. In fine :

$$\{\xi^k \mid k \wedge n = 1\} = \mu_n^*(\mathbb{K})$$

- Soit $P \in \mathbb{Z}[X]$. Alors on a, dans $\mathbb{F}_p[X]$, $\overline{P}(X^p) = \overline{P}(X)^p$. Démontrons le par récurrence (forte) sur $m = \deg(P)$.
 - $-m=-\infty$. Chut.
 - -m=0. Trivial
 - Supposons la propriété vraie au rang $m \geq 1$. Alors $P = G + aX^{m-1}$, avec $\deg(P) \leq m$. Le résultat découle alors de l'identité de Frobenius : $si \land est$ un anneau commutatif de caractéristique p alors $x \mapsto x^p$ est un endomorphisme d'anneau. Ce dernier résultat suinte à son tour de la tristement célèbre formule du binôme de Newton et du fait que si $1 \leq k \leq p-1$ alors comme $p|k!(p-k)!C_p^k = p!$ et que $p \land k!(p-k)! = 1$ le lemme de Gauss nous affirme p0 que $p|C_p^k$ 0 et donc que p1.

Références

[Gou94] Xavier Gourdon. Algèbre. Ellipses, 1994.

^{5.} À raison.