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1 Introduction

Consider a finite set S = {1, 2, . . . , N}, and the associated space of probability measures M1(S).
Then consider a simple Markov chain (Xi)i≥1 on S with transition kernel Πij = P{Xk+1 =
j|Xk = i} and initial measure µ0 ∈ M1(S). Let LX

n = (LX
n (1), . . . , LX

n (N)) denote the
empirical measure defined by

LX
n (i) =

1

n

n∑
k=1

1{Xk=i}. (1.1)

It has values in M1(S). One interest of this sequence is that it contains useful information to study
the asymptotic behavior of the Markov chain. For instance, the empirical mean of f(Xn) where f
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is any function S → R is simply
∫
f(x)LX

n (dx). We try to understand the asymptotic behavior of
the distribution of LX

n in M1(S).

A sequence of distributions (pn) over a topological space is said to satisfy a large deviation principle
(LDP) with rate function I if for every Borel set B,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
log pn(B) ≤ lim sup

n→∞

1

n
log pn(B) ≤ − inf

x∈B
I(x). (1.2)

The value I(x) should be understood as the rate of exponential decay of the probability to be close
to x, under law pn. The closer it gets to 0, the higher is the probability for a sequence of random
variable of laws (pn) to get near x. In the case of LX

n , the formulation of the LDP with rate function
I is, for every B Borel set of M1(S),

− inf
q∈B◦

I(q) ≤ lim inf
n→∞

1

n
logP(LX

n ∈ B) ≤ lim sup
n→∞

1

n
logP(LX

n ∈ B) ≤ − inf
q∈B

I(q). (1.3)

In the following, we state and try to understand the LDP for LX
n over M1(S) when Π is irreducible.

This has been widely discussed in the literature, and the following document only applies existing
results to the irreducible Markov chains over finite state space, possibly refining and detailing them
in this specific case. Most of the statements are adapted from [DZ10] and [RAS15].

In this document, we will prove the LDP for empirical measures as an application of the Gärtner-
Ellis Theorem as done in [DZ10]. But there are other ways to prove it (from [RAS15] or [dH08]
for instance), each one providing a different rate function. It can even happen that along the proof,
the upper bound of (1.2) is obtained with a certain rate function, and the lower bound is obtained
with another. In order to prove a proper LDP, one must show that these two functions are equal!
We will study four functions that typically appear in LDP proofs, and show that they are equal.
Our goal is to understand how comes that these functions are equal, and understand precisely the
relations between them.

The four functions are all expressed under a variational form, and we will try to manipulate their
maximizers and minimizers when they exist in order to detail their behavior and relations between
them. These descriptions help to understand what happens when they do not exist.

A deep comprehension of the relations between the four studied rate functions in simple cases
should also help us deal with the critical cases to come (when Π is no longer irreducible for
instance).

The assumption that Π is irreducible is of great help to keep the Markov chain as simple as possible.
In the following, we mainly work under the irreducibility assumption:

(Irr) The matrix Π is irreducible, i.e.,

∀i, j ∈ S, ∃p ∈ N Πp(i, j) > 0.

For many statements, the following positivity assumption will be crucial:

(Pos) All the entries of Π are positive.

Of course, this is a stronger assumption on Π, and we shall prefer (Irr) to it whenever possible.
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2 LDP for empirical measures

For λ ∈ RS , let Πλ and Π̃λ be the tilted matrices defined from Π by Πλ(i, j) = eλiΠij and
Π̃λ(i, j) = eλjΠij . For the needs of Theorem 2.7, we are interested in the value of their spectral
radius denoted ρ(Πλ) and ρ(Π̃λ).

2.1 Preliminary remarks on Πλ, Π̃λ, and the Perron-Frobenius theorem

We should first understand that Πλ, Π̃λ are essentially equivalent from a spectral point of view.

Proposition 2.1. Let D = diag(eλ1 , . . . , eλN ). Then, u 7→ Du is a bijection between the set
of eigenvectors of Π̃λ and the set of eigenvectors of Πλ that preserve the associated eigenvalue.
Moreover,

ρ(Πλ) = ρ(Π̃λ) = ρ(ΠT
λ ) = ρ(Π̃T

λ ). (2.1)

Proof. Notice that one can rewrite Πλ as Πλ = DΠ and Π̃λ as Π̃λ = ΠD. If u is an eigenvector of
Π̃λ associated to the eigenvalue α, the equality ΠDu = αu yields DΠ(Du) = α(Du), meaning
that Du is an eigenvector of DΠ = Πλ associated to the eigenvalue α. Now if v is an eigenvector
of Πλ associated to the eigenvalue α, note that D−1v is an eigenvector of Π̃λ associated to the
eigenvalue α, because ΠD(D−1v) = D−1(DΠ)v = D−1αv. As Πλ, Π̃λ, and their transpose have
the same eigenvalues, they have the same spectral radius. 2

Let us recall the Perron-Frobenius theorem as stated in [DZ10, Theorem 3.1.1]. It can help to
compute the spectral radius of irreducible non-negative matrices.

Theorem 2.2 (Perron-Frobenius). Let A be an irreducible non-negative matrix indexed in S × S.
Then ρ(A) is a simple eigenvalue (called the Perron-Frobenius eigenvalue) of A, such that

1. A has left and right eigenvectors (called Perron-Frobenius eigenvectors) associated to the
eigenvalue ρ(A), that have positive coordinates,

2. the left and right Perron-Frobenius eigenvectors are unique up to scalar multiplication,

3. for every i ∈ S, for every vector ϕ having all of its coordinates positive,

log(ρ(A)) = lim
n→∞

1

n
log

∑
j∈S

ϕjA
n(j, i)

 = lim
n→∞

1

n
log

∑
j∈S

An(i, j)ϕj

 . (2.2)

Proof. The first two points are well known and are discussed in [HJ93, Section 8.4]. For the last
point, let u be the left Perron-Frobenius eigenvector of A, and let α = supi ui > 0, β = infi ui > 0,
γ = supi ϕi > 0, δ = infi ϕi > 0. Then, for every i, j,

δ

α
uiA

n(i, j) ≤ δAn(i, j) ≤ ϕiA
n(i, j) ≤ γAn(i, j) ≤ γ

β
uiA

n(i, j).

Taking the sum over j of the above inequalities yields

δ

α
ρ(A)nuj ≤

N∑
j=1

An(i, j)ϕi ≤
γ

β
ρ(A)nuj .
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Take the logarithm and get

1

n
log

(
δ

α
uj

)
+ log ρ(A) ≤ 1

n
log

(
N∑
i=1

ϕiA
n(i, j)

)
≤ 1

n
log

(
γ

β
uj

)
+ log ρ(A).

Thus taking the limit provides the first equality in (2.2). One can repeat this reasoning with the
right Perron-Frobenius eigenvector v of Πλ to get the second one. 2

The particular cases of A = Πλ or A = Π̃λ is interesting to note. The following statement holds
because Πλ and Π̃λ are irreducible if and only if Π is.

Corollary 2.3. Under (Irr), for a deterministic vector ϕ having all of its coordinates positive, one
has

lim
n→∞

1

n
log

(
N∑
i=1

ϕiΠ
n
λ(i, j)

)
= lim

n→∞

1

n
log

 N∑
j=1

Πn
λ(i, j)ϕj

 = log(ρ(Πλ)). (2.3)

Corollary 2.3 has useful consequences: now log ρ(Πλ) can be expressed as a limit depending on
the law of LX

n . In the following, if q is a measure on S and λ is a vector of RS , ⟨q, λ⟩ denotes their
product in the duality RS ↔ RS :

⟨q, λ⟩ :=
∫
S
λidq(i) =

∑
i∈S

qiλi. (2.4)

Proposition 2.4. Under (Irr),

log ρ(Πλ) = log ρ(Π̃λ) = log ρ(ΠT
λ ) = log ρ(Π̃T

λ ) = lim
n→∞

1

n
logE

[
en⟨L

X
n ,λ⟩

]
. (2.5)

Proof. The only equality that is not already stated in (2.1) is the last one. Let us compute precisely
the expectation in (2.5). Remember the initial state is distributed according to µ0. We get

E
[
en⟨L

X
n ,λ⟩

]
= E

[
e
∑n

i=1 λXi

]
=

∑
x1,...,xn

P(X1 = x1, . . . , Xn = xn)
n∏

i=1

eλxi

=
∑

x0,x1,...,xn

µ0(x0)
(
Π(x0, x1)e

λx1

)
· · ·
(
Π(xn−1, xn)e

λxn

)

=

N∑
x0=1

µ0(x0)
∑

x1,...,xn

Π̃λ(x0, x1) · · · Π̃λ(xn−1, xn)

=

N∑
x0=1

N∑
xn=1

µ0(x0)Π̃
n
λ(x0, xn).

Thus by Corollary 2.3, for any j,

lim
n→∞

1

n
logE

[
e
∑n

i=1 λXi

]
= lim

n→∞

1

n
log

(
N∑
i=1

µ0(i)Π̃
n
λ(i, j)

)
= log ρ(Π̃λ),

and (2.5) is finally proven. 2
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Applying Hölder inequality to the functions λ 7→ 1
n logE

[
en⟨L

X
n ,λ⟩

]
yields that each one is convex.

Thus, Proposition 2.4 implies that λ 7→ log ρ(Πλ) is convex as a pointwise limit of convex functions.
However, a direct way of proving the convexity provides the following stronger statement.

Lemma 2.5. The function λ 7→ log ρ(Πλ) is strictly convex, that is to say for all λ, λ′ and all
0 < t < 1,

log ρ
(
Πtλ+(1−t)λ′

)
≤ t log ρ (Πλ) + (1− t) log ρ (Πλ′) ,

and the inequality is strict unless λ− λ′ is constant.

In the previous lemma and in the following, saying that a vector is constant is, by definition, saying
that all its coordinates are equal.

Proof. The convexity comes from Hölder inequality. Let λ, λ′ ∈ RS and 0 ≤ t ≤ 1, and let
Γ = Πtλ+(1−t)λ′ . Then Γ = Πt

λΠ
1−t
λ′ . Let v and w be the right Perron-Frobenius of Πλ and Πλ′

respectively, and let ui = vtiw
1−t
i > 0. By Hölder inequality,

1

ui

∑
j

Γ(i, j)uj =
1

ui

∑
j

(Πλ(i, j)vj)
t(Πλ′(i, j)wj)

1−t

≤ 1

ui

∑
j

Πλ(i, j)vj

t∑
j

Πλ′(i, j)wj

1−t

(2.6)

=
1

ui
(ρ(Πλ)vi)

t (ρ(Πλ′)wi)
1−t

= ρ(Πλ)
tρ(Πλ′)1−t.

Thus by [HJ93, Theorem 8.1.26] (bounds for the spectral radius of a matrix),

ρ(Γ) ≤ max
i

1

ui

∑
j

Γ(i, j)uj ≤ ρ(Πλ)
tρ(Πλ′)1−t. (2.7)

This shows the convexity. Now turn to the necessary conditions for inequality (2.7) to be an equality.
If it is, there is equality in Hölder inequality (2.6). For all i, equality case in Hölder inequality
implies the existence of αi ∈ (0,∞) such that

∀j ∈ S Πλ(i, j)vj = αiΠλ′(i, j)wj .

Summing these equalities over j yields ρ(Πλ)vi = αiρ(Πλ′)wi so αi =
ρ(Πλ)
ρ(Πλ′ )

· vi
wi

. Therefore,

∀i, j ∈ S
vj
wj

= αie
λi−λ′

i =
ρ(Πλ)

ρ(Πλ′)

vi
wi

eλi−λ′
i .

Thus the ratio vj
wj

is independent of j, and values a certain constant c. The previous equation
becomes

∀i ∈ S c =
ρ(Πλ)

ρ(Πλ′)
ceλi−λ′

i .

So λ− λ′ has to be constant. 2
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2.2 The large deviations principle as application of Gärtner-Ellis Theorem

First we recall the Gärtner-Ellis Theorem in finite dimension.

Theorem 2.6 (Gärtner-Ellis). Let µn be a sequence of laws over RS , associated with their logarith-
mic moment generating function Λn defined by

Λn(λ) := log

∫
eλxµn(dx), λ ∈ RS .

Assume for each λ ∈ R the existence of a pressure Λ(λ) given by

Λ(λ) := lim
n→∞

1

n
log

∫
enλxµn(dx) ∈ R ∪ {±∞},

and assume Λ is steep, lower semicontinuous, and differentiable over its domain. Furthermore,
assume that 0 is in the interior of the domain of Λ. Then, µn satisfies a LDP with rate function the
Legendre-Fenchel transform of Λ.

The Sanov Theorem for the empirical measures of a Markov chain derives form this theorem.

Theorem 2.7 (Sanov). The distribution of LX
n satisfies a LDP with rate function the Legendre-

Fenchel transform of λ 7→ log ρ(Πλ) over RS .

Proof. The existence of the pressure derives from equation (2.5). Plus, it yields an expression for
Λ, that is Λ(λ) = log ρ(Πλ). This function is defined over RS , lower semicontinuous, and convex
by Lemma 2.5. It remains to see that it is differentiable over R. Thanks to [Ser10, Theorem 5.3],
the Perron-Frobenius eigenvalue of a matrix, being algebraically simple, is an analytic function of
the matrix. Thus Λ is differentiable over R. 2

3 Different expressions of the rate function

For any probability vector q ∈ M1(S), consider the following rate functions:

I(q) = sup
λ∈RS

(⟨q, λ⟩ − log ρ(Πλ)), (3.1)

J(q) = sup
u>0

∑
i

qi log
ui

(uΠ)i
, (3.2)

K(q) = sup
v>0

∑
i

qi log
vi

(Πv)i
, (3.3)

L(q) = inf
KS(q)

∑
i,j

qiQij log
Qij

Πij
, (3.4)

where u > 0, v > 0 means that u and v must have their coordinates positive, and where KS(q) is
the set of stochastic kernels Q = (Qij)i,j∈S over S which admit q as an invariant measure. We
name f q

I , f q
J , f q

K , f q
L the functions being optimized in I(q), J(q),K(q), L(q) respectively.

Let Sq be the support of q, that is to say the set of indices i such that qi > 0.
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Remark 3.1. Let us check the above definitions. Under (Pos) assumption, there is no difficulty
in the definitions of f q

I , f q
J , f q

K , and f q
L. However, under (Irr), we should check definitions and

set conventions. The coordinates of Πv are positive for positive vectors v (otherwise there exists
i such that the whole i-th line of Π is null, which is impossible because the lines of Π sum up to
1), so f q

K(v) is well defined and finite. The coordinates of uΠ are positive for positive vectors u
(otherwise there exists a j such that the whole j-th column column of Π is null, which implies that
the j-th column of Πp is null for every p, and it is impossible because of (Irr)), so f q

J(u) is well
defined and finite. Notice that the conclusion uΠ > 0 used (Irr) but Πv > 0 is only based on the
fact that Π is stochastic. In the reducible case, we work with the convention qj log

uj

0 = +∞ if
qj > 0 and qj log

uj

0 = +∞ = 0 if qj = 0.

As for f q
L, we will work under the convention 0 log 0 = 0. This disambiguates the definition

of f q
L(Q) for a stochastic kernel Q that is absolutely continuous with respect to Π (that is, if

Π(i, j) = 0 for some i, j ∈ S, then Q(i, j) = 0). When there exsit i, j ∈ S such that Π(i, j) = 0

and Q(i, j) ̸= 0, we take Q(i,j)
Π(i,j) to be +∞. If i is such that qi > 0, it yields f q

L(Q) = +∞. The
function f q

L is only finite over the set of stochastic kernels that satisfy ∀i ∈ Sq,∀j ∈ S Π(i, j) =
0 ⇒ Q(i, j) = 0. As long as this set is not empty, L(q) < +∞.

In the previous section, we showed the LDP for the empirical measures LX
n associated with the rate

function I under (Irr). However, there are other ways to show it. Another proof of the same LDP
in [dH08, Theorem 4.6] provides a LDP associated with the rate function L. The proof in [RAS15,
Theorem 13.5] ends up with a rate function K for the upper bound and L for the lower bound. In
this context, if K was not proven equal to L, the LDP for LX

n would not be granted. In this section,
we will show that, even without (Irr), I = J = K = L.

3.1 Equality of I and K

Proposition 3.2. For all q ∈ M1(S), I(q) = K(q).

Proof. Let q ∈ M1(S) we show that I(q) = K(q) by showing the two inequalities. In the
following, || · || denotes the subordinate matrix norm, associated with the vector norm |w| =
maxi |wi|. It is multiplicative an satisfies for any matrix A and vector w, |Aw| ≤ ||A|| × |w|.

I(q) ≤ K(q). Let λ ∈ RS . Take α > log ρ(Πλ), and let

v :=
∞∑
k=0

e−kαΠk
λ1. (3.5)

The definition of v comes from [DS89, Lemma 4.1.36]. Now we want to check that v has been
properly defined. One has

|e−kαΠk
λ1| ≤ e−kα||Πk

λ|| = exp(−kα+ log(||Πk
λ||).

The norm || · || being a subordinate norm, one has 1
k log ||Π

k
λ|| −−−→

k→∞
log ρ(Πλ) (proof in [Ser10,

Proposition 7.8]). Thus

exp(−kα+ log(||Πk
λ||) = exp

(
−k
(
α− log ρ(Πλ) + o

k→∞
(1)
))

.

For k big enough, the factor of k in the exponential is lower than β = 1
2(α− log ρ(Πλ)) > 0. Thus

for k big enough, |e−kαΠk
λ1| is dominated by

(
e−β

)k. This justifies that the series
∑

k e
−kαΠk

λ1
converges.
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The matrix Π being stochastic, at least one of the coefficients of each line of Π must be positive,
thus for each i, (Πλ1)i > 0, so v > 0 (remember Remark 3.1). Then the same arguments yields
that Πλv > 0 and Πv > 0. Moreover, v satisfies

Πλv =

∞∑
k=0

e−kαΠk+1
λ 1 = eα

∞∑
k=1

e−kαΠk
λ1 = eα(v − 1), (3.6)

so we even have v > 1. Thus,

⟨λ, q⟩ − f q
K(v) =

∑
i∈S

qi log
eλi(Πv)i

vi

=
∑
i∈S

qi log
(Πλv)i

vi

=
∑
i∈S

qi

(
log

vi − 1

vi
+ α

)
≤
∑
i∈S

qiα = α. (3.7)

This says that ⟨λ, q⟩ − α ≤ f q
K(v) ≤ K(q), thus by taking the limit when α → log ρ(Πλ), one has

f q
I (λ) ≤ K(q), satisfied for every λ. Finally, taking the supremum over λ, I(q) ≤ K(q).

I(q) ≥ K(q). Let v be any positive vector. Define λ by λi = log vi
(Πv)i

. λ is finite because
Πv > 0. We have

(Πλv)i =
∑
j

vi
(Πv)i

Π(i, j)vj = vi,

so v is an eigenvector of Πλ and for all n, Πn
λv = v. This implies that log ρ(Πλ) ≤ 0. Indeed, by

[Ser10, Proposition 7.8],

log ρ(Πλ) = lim
n→∞

1

n
log ||Πn

λ|| = lim
n→∞

1

n
log

(
sup
|w|=1

|Πn
λw|

)
.

Take a look at |Πn
λw| when |w| = 1. It is the maximum over i of |

∑
j Π

n
λ(i, j)wj |. For each i, the

triangle inequality says that this quantity is greater if the coordinates wi all have the same sign.
Thus when optimizing it, one can only consider the w with non-negative coordinates, and

log ρ(Πλ) = lim
n→∞

1

n
log

(
sup
|w|=1

|Πn
λw|

)
= lim

n→∞

1

n
log

 sup
|w|=1
w≥0

|Πn
λw|

 .

Consider some w ≥ with |w| = 1. As v > 0, it satisfies w ≤ 1
infi vi

v. Therefore,

0 ≤ Πn
λw ≤ 1

infi vi
Πn

λv =
1

infi vi
v,

and thus

|Πn
λw| ≤

|v|
infi vi

.

This shows that

sup
|w|=1
w≥0

|Πn
λw| ≤

|v|
infi vi

.
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Taking the logarithm yields log ρ(Πλ) ≤ limn→∞
1
n log |v|

infi vi
= 0. Now we have

I(q) = sup
λ∈RS

f q
I (λ) ≥ f q

I (λ) ≥ ⟨λ, q⟩ − 0 =
∑
i

qi log
vi

(Πv)i
= f q

K(v). (3.8)

Taking the supremum over v provides I(q) ≥ K(q). 2

3.2 Equality of I and J

The intuition we want to apply to prove that I = J is to try to copy the proof of I = K with
left matrix multiplication and Π̃λ instead of Πλ. But without (Irr), it is possible that uΠ has null
coordinates, even if u > 0 (see Remark 3.1), so even if the main arguments are the same, the proof
of I = J has to get around this difficulty. Recall we work with the convention qj log

uj

0 = +∞ if
qj > 0 and qj log

uj

0 = +∞ = 0 if qj = 0.

Proposition 3.3. For all q ∈ M1(S), I(q) ≥ J(q).

Let S′ be the set of indices j of non null columns of Π, that is to say

S′ = {j ∈ S | ∃i ∈ S Π(i, j) > 0}. (3.9)

In other words, S\S′ is the space of states of S which are not reachable from any state under the
transition kernel Π. No arrow of the graph of the Markov chain (Xn) points toward them. Observe
that if S′ = S, then the proof of I = K can be copied to show I = J .

Lemma 3.4. If S′ = S, then for all q ∈ M1(S), I(q) = J(q).

Proof. Let q ∈ M1(S).

I(q) ≤ J(q). Let λ ∈ RS , and let α > log ρ(Πλ). Define

u :=

∞∑
k=0

e−kα1Π̃k
λ. (3.10)

The series converge with a copy of the argument of Proposition 3.2 because

|e−kα1Π̃k
λ| ≤ exp

(
−k(α− 1

k
log ||Π̃k

λ||)
)

= exp

(
−k

(
α− log ρ(Πλ) + o

k→∞
(1)

))
.

Now as S = S′, every coordinate of 1Π̃λ is positive, thus u > 0. Therefore, again because of
S = S′, this implies uΠ̃λ > 0. Moreover, u satisfies

uΠ̃λ =

∞∑
k=0

e−kα1Π̃K+1
λ = eα

∞∑
k=1

e−kα1Π̃k
λ = eα(u− 1),

so u > 1. Thus,

⟨λ, q⟩ − f q
J(u) =

∑
j∈S

qj

(
log

uj − 1

uj
+ α

)
≤
∑
j∈S

qiα = α. (3.11)
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Therefore, ⟨λ, q⟩ − α ≤ f q
J(u) ≤ J(q), and taking α → log ρ(Πλ) yields f q

I (λ) ≤ J(q). Taking
the supremum over λ ∈ RS yields I(q) ≤ J(q).

I(q) ≥ J(q). Let u > 0. Define λ by λj = log
uj

(uΠ)j
. Then λ is finite because S = S′. We have

(uΠ̃λ)j =
∑
i

uj
(uΠ)j

uiΠ(i, j) = uj ,

so u is an eigenvector of Π̃λ and for all n, uΠ̃n
λ = u. A copy of the argument used in the proof of

Proposition 3.2 with the left matrix multiplication and Π̃λ yields that log ρ(Πλ) = log ρ(Π̃λ) ≤ 0.
Now we have

I(q) = sup
λ∈RS

f q
I (λ) ≥ f q

I (λ) ≥ ⟨λ, q⟩ − 0 =
∑
j∈S

qj log
uj

(uΠ)j
= f q

J(u). (3.12)

Taking the supremum over u yields I(q) ≥ J(q). 2

The assumption that S′ = S was crucial in the above argument. Without it, we are not granted
that u > 0, so the computation of f q

J(u) is ambiguous and λ has infinite coordinates. Another case
that can be easily handeled is when Sq ̸⊂ S′, that is to say there exists an index j0 /∈ S′ such that
qj0 > 0.

Lemma 3.5. Let q ∈ M1(S). If Sq ̸⊂ S′, then I(q) = J(q) = +∞.

Proof. In one hand, the j0-th column of Π̃λ is full of zeros, so Π̃λ is a constant with respect to λj0 .
It implies that the quantity ρ(Πλ) = ρ(Π̃λ) do not depends on λj0 . Thus by taking λj0 → +∞ and
λj = 0 for every other coordinate, one has

f q
I (λ) = qj0λj0 − log ρ(Πλ) −−−−−→

λj0
→∞

+∞.

In the other hand, for every u > 0,

f q
J(u) =

∑
j∈Sq

qj log
uj

(uΠ)j
= +∞,

the term of index j0 being qj0 log
uj

0 = +∞. Thus J(q) = +∞. 2

Now we turn to the proof of Proposition 3.3. To prove Proposition 3.3, we use a recurrence
argument based on Lemmas 3.4 and 3.5. Let S(0) = S, S(1) = S′, and define

S(k+1) = {j ∈ S(k) | ∃i ∈ S(k) Π(i, j) > 0}, (3.13)

for k ≥ 1. In other words, S\S(k) is the set of states that are not the end of any path of n steps in
the graph of the Markov chain (Xn).

In the following, we will restrain the state space to S(k) ⊂ S. It means we project RS onto RS(k)
,

and work with extracted matrices1. If A is a matrix over S × S, then AS(k) denotes the extracted
matrix over S(k) × S(k) from A. The matrix multiplication is defined by

(AS(k)v)i =
∑

j∈S(k)

A(i, j)vj , (uAS(k))j =
∑

i∈S(k)

uiA(i, j). (3.14)

1we do not re-index the coefficients of ΠS(k) after extraction.
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If Sq ⊂ S(k), q can be seen as a probability over S(k) and we define slightly modified versions of
I(q) and J(q) with

I(k)(q) = sup
λ∈RS(k)

 ∑
i∈S(k)

qiλi − log ρ
(
Πλ

S(k)

) , (3.15)

J (k)(q) = sup
u∈S(k)

∑
i∈S(k)

qi log
ui

(uΠS(k))i
. (3.16)

Let us consider a new Markov chain
(
X

(k)
n

)
over S(k), with transition kernel ΠS(k) . We check that

it is really a stochastic matrix. As it is an extracted matrix from Π, it is non-negative. Moreover,
for all j ∈ S(k), and for all i ∈ S(k−1)\S(k), by definition ΠS(k−1)(i, j) = 0. It implies that for all
i ∈ S(k), ∑

j∈S(k)

ΠS(k)(i, j) =
∑

j∈S(k−1)

ΠS(k−1)(i, j) = . . . = 1,

by a recurrence argument. Thus
(
X

(k)
n

)
is a Markov chain defined over S(k). All the previous

statements are in force with this new Markov chain. Trying to define the rate functions I and J
over M1(S

(k)) for this Markov chain leads naturally to the definitions (3.15) and (3.16).

Proof of Proposition 3.3. Let q ∈ M1(S) and let k ≥ 0 such that Sq ⊂ S(k+1). One can see q
as an element of M1(S

(k+1)). Start by showing I(k)(q) = I(k+1)(q) and J (k)(q) = J (k+1)(q).
This will allow us to trade the problem of showing I(k)(q) = J (k)(q) for the smaller one of
I(k+1)(q) = J (k+1)(q).

I(k)(q) = I(k+1)(q). As Sq ⊂ S(k+1), it is enough to show that log ρ(Πλ
S(k+1)) = log ρ(Πλ

S(k+1)).
To simplify the notations in the following computations, one can assume that, up to reindexation
of the sates, S(k)\S(k+1) = {1, . . . , p} and S(k+1) = {p + 1, . . . , l}. The matrix Πλ

S(k) has the
following form:

Πλ
S(k) =

(
(0) A
(0) Πλ

S(k+1)

)
,

with a certain matrix A of dimensions p×(l−p). Thus, for a vector w written by blocs w =

(
w1

w2

)
,

one has

(Πλ
S(k))

nw =

(
(0) A(Πλ

S(k+1))
n−1

(0) (Πλ
S(k+1))

n

)(
w1

w2

)
=

(
A(Πλ

S(k+1))
n−1w2

(Πλ
S(k+1))

nw2

)
.

Taking the supremum over |w| = 1 yields

||(Πλ
S(k))

n|| = max
(
||A(Πλ

S(k+1))
n−1||, ||(Πλ

S(k+1))
n||
)
.

Taking the n-th root and the limit when n → ∞ finaly yields ρ(Πλ
S(k)) = ρ(Πλ

S(k+1)), thanks to
[Ser10, Proposition 7.8]. Therefore, as changing the coordinates λ of indices in S(k)\S(k+1) does
not change

∑
i∈S(k) qiλi − log ρ

(
Πλ

S(k)

)
,

I(k+1)(q) = sup
λ∈RS(k+1)

∑
i∈Sq

qiλi − log ρ(Πλ
S(k+1))


= sup

λ∈RS(k+1)

∑
i∈Sq

qiλi − log ρ(Πλ
S(k))

 = I(k)(q). (3.17)
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J (k+1)(q) = J (k)(q). Let u > 0, let γ ∈ [0, 1), and take u′ > 0 defined by

u′j =

{
uj if j ∈ S′

(1− γ)uj else.

As Sq ⊂ S(k+1) ⊂ S(k), we have

∑
j∈S(k)

qj log
u′j

(u′ΠS(k))j
=

∑
j∈S(k+1)

qj

log uj − log

 ∑
i∈S(k)

uiΠ(i, j)− γ
∑

i∈S(k)\S(k+1)

uiΠ(i, j)


This is a non decreasing function of γ, that tends to the value

∑
j∈S(k)

qj log
u′j

(u′ΠS(k))j
−−−→
γ→1

∑
j∈S(k+1)

qj log
uj

(uΠS(k+1))j

when γ → 1. Thus,

J (k+1)(q) = sup
u>0

∑
j∈S(k+1)

qj log
uj

(uΠS(k+1))j
= sup

u>0

∑
j∈S(k+1)

qj log
uj

(uΠS(k))j
= J (k)(q). (3.18)

Now it remains to actually run the recurrence. Consider the Markov chain
(
X

(k)
n

)
defined over

S(k) by the transition kernel ΠS(k) .

If S(k) = S(k+1), that is to say if every state in S(k) has an arrow pointing toward them in the graph
of transitions of the Markov chain

(
X

(k)
n

)
, then by Lemma 3.4, I(k)(q) = J (k)(q). The recursive

process stops at k. If Sq ̸⊂ S(k+1), then by lemma 3.5, I(k)(q) = J (k)(q) = +∞. The recursive
process stops at k.

Else, we consider
(
X

(k+1)
n

)
defined over S(k+1) by the transition kernel ΠS(k+1) . The cardinal of

S(k+1) is strictly lower than the cardinal of S(k). We apply the same reasoning to
(
X

(k+1)
n

)
.

Eventually, this recursive process will stop because S = S(0) is finite, and the size of S(k) cannot
decrease infinitely many times. When it stops, at some k ≥ 0, either Sq ⊂ S(k+1) or S(k) = S(k+1).
In both cases, the arguments above are in force and one can conclude that I(k+1)(q) = J (k+1)(q).
Thus

I(q) = I(1)(q) = . . . = I(k+1)(q) = J (k+1)(q) = . . . = J (1)(q) = J(q).

This completes the proof. 2

Remark 3.6. Notice that under (Irr) assumption, one can verify directly that S′ = S so the proof
does not need the recurrence argument. See Remarks 4.17 and 4.18 below for this simpler proof.

Remark 3.7. We already discussed the meaning of the definition of S(k). Observe that restraining
from S(k) to S(k+1) is removing the states of the Markov chain

(
X

(k)
n

)
which can only occur at

time 1. Restraining from S to S(k+1) is thus removing the states of (Xn) that can only occur at
times lower that k + 1. After a deterministically finite time, they will never be reached again by
Xn. Such states are meaningless in a large deviation point of view, because for n large enough the
probability for LX

n to charge them more than a positive constant is always zero. This is the sense of
Lemma 3.5. The following example illustrates the definition of S(k) and the need to use it.
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1

3

2 4

5 6

7

S(2)

S(1)S = S(0)

3.3 Equality of K and L

Let us only assume that Π is irreducible and drop the assumption Π > 0. In the following we show
that L = K by arguments based on the Legendre-Fenchel transform. Arguments are adapted from
Theorems 13.1 and 13.2 in [RAS15] to the finite-dimensional case.

Proposition 3.8. For all q ∈ M1(S), K(q) = L(q).

We provide here only a partial proof of Proposition 3.8. Some technical arguments are to be found
in the proof of [RAS15, Theorem 13.1].

Proof. Let Λ1 and Λ2 be defined respectively on RS and RS × RS as follow:

Λ1(w) =
∑
i

qi log

∑
j

Π(i, j)ewj

 , (3.19)

Λ2(w) =
∑
i

qi log

∑
j

Π(i, j)ewi,j

 . (3.20)

When w ∈ RS × RS does not depend on its first coordinate, we sure have Λ2(w) = Λ1(w). Both
functions are lower semicontinuous and convex by Hölder inequality. Notice that Λ1 is fairly linked
to K:

K(q) = sup
v>0

∑
i

αi log
vi

(Πv)i

= sup
w∈RSq

∑
i

qi (wi − log(Πew)i)

= sup
w∈RSq

(⟨q, w⟩ − Λ1(w)) (3.21)

= Λ∗
1(q). (3.22)
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Remark 3.9. As Λ1 has q as a parameter, the right-hand function of q in line (3.21) is not the
Legendre-Fenchel transform of Λ1. However, if q is fixed and r is a measure taken as a variable,
supw∈RSq (⟨r, w⟩ − Λ1(w)) really is the transform of Λ1 at r, and it is possible to evaluate it at
r = q. Thus it is actually true that K(q) = λ∗

1(q).

Let w ∈ RS . By Fenchel-Moreau Theorem (see [Bre99] for a reference on the Fenchel-Moreau
Theorem), Λ2 is its convex biconjugate, so

Λ1(w) = Λ2(w) = Λ∗∗
2 (w) = sup

ν∈M1(S×S)
(⟨ν, w⟩ − Λ∗

2(ν)). (3.23)

The actual dual of RS × RS is also RS × RS , but Λ∗
2(ν) is infinite whenever ν is not a probability

measure, so the supremum can be taken only on M1(S×S). Indeed, if there exists (i0, j0) ∈ S×S
such that ν(i0, j0) < 0, with w = (δi,i0δj,j0) ∈ RS × RS and c > 0,

Λ∗
2(ν) ≥ ⟨ν,−cw⟩ − Λ2(−cw)

= −cν(i0, j0) + cqi0 −
∑
i

qi log Π(i, j0) −−−−→
c→+∞

+∞.

If ν(S × S) > 1, for wi,j = c,

Λ∗
2(ν) ≥ ⟨ν, w⟩ − Λ2(w)

= −cν(S × S)− c
∑
i

qi = c(ν(S × S)− 1) −−−−→
c→+∞

+∞.

This shows equation (3.23). As w does not depend on the second coordinate, ⟨ν, w⟩ = ⟨ν1, w⟩
where ν1 denotes the first marginal of ν. Thus we derive

Λ1(w) = sup
ν∈M1(S×S)

(⟨ν, w⟩ − Λ∗
2(ν))

= sup
ν∈M1(S×S)

(⟨ν1, w⟩ − Λ∗
2(ν))

= sup
r∈M1(S)

 sup
ν∈M1(S×S)

ν1=r

(⟨ν1, w⟩ − Λ∗
2(ν))


= sup

r∈M1(S)

⟨r, w⟩ − inf
ν∈M1(S×S)

ν1=r

Λ∗
2(ν)

 . (3.24)

This equality holds for every w ∈ RS , thus if M denotes the function M1(S) ∋ r 7→ infν,ν1=r Λ
∗
2(ν),

we just showed that M∗ = Λ1.

By Fenchel-Moreau Theorem, M = M∗∗ = Λ∗
1 over M1(S). It means that for every probability

measure r,
M(r) = sup

w∈RSq

(⟨r, w⟩ − Λ1(w)) (3.25)

In particular, for r = q, it yields M(q) = K(q) in virtue of equation (3.22). Now it remains
to show that M(q) = L(q). To do so, the proof of [RAS15, Theorem 13.1] yields that for any
ν ∈ M1(S × S), if ν2 = q, then

Λ∗
2(ν) = H(ν(i, j)|qiΠ(i, j)) (3.26)
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and Λ∗
2(ν) = ∞ else. Therefore,

M(q) = inf
ν1=q

Λ∗
2(ν)

= inf
ν1=q
ν2=q

∑
i,j

ν(i, j) log
ν(i, j)

qiΠ(i, j)
(notice that this function is infinite if ν ̸≪ (qiΠ(i, j))i,j)

= inf
Q∈KS(q)

∑
i,j

qiQ(i, j) log
qiQ(i, j)

qiΠ(i, j)
= L(q).

The last line is possible by taking qiQ(i, j) = ν(i, j) for every ν, which defines a stochastic kernel
stabilizing q if ν1 = ν2 = q (conversely, defining ν from Q gives a measure whose both marginals
are q). We have proved that K(q) = M(q) = L(q). 2

4 The irreducible case: optimization of the variational formulae

The previous section showed that I = J = K = L but did not express the links between the
functions f q

I , f q
J , f q

K and f q
L. Under (Irr) and a fortiori under (Pos), some stronger relations are

satisfied and enlighten the links between I , J , K, and L. In this section, we will discuss the
existence or not of optimizers for f q

I , f q
J , f q

K and f q
L, and find relations between them.

4.1 Maximizing f q
K

We wonder whether there exists a maximizer of f q
K . We will distinguish two cases in the following

proposition and corollary.

Proposition 4.1. If Sq ̸= S, then f q
K does not reach its supremum. However, under (Pos),

K(q) = sup
v>0

f q
K = sup

v>0

∑
i∈Sq

qi log
vi∑

j∈Sq
Π(i, j)vj

, (4.1)

and the right-hand supremum is reached.

Corollary 4.2. Under (Pos), if Sq = S, then f q
K has a maximizer.

Corollary 4.2 is a direct consequence of Proposition 4.1 because f q
K is the optimized function of

the righ-hand term in (4.1) when Sq = S.

Remark 4.3. When q has some null coordinates, we will understand that f q
K cannot reach its

maximum because forcing some coordinates of v to get closer to 0 improves the value of f q
K(v).

Thus, the right-hand supremum in (4.1) is only the limit case, when we allow v to have null
coordinates.

Proof of Proposition 4.1. Assume Sq ̸= S. Let γ ∈ [0, 1). For any v > 0, consider a new vector
v′ > 0 with coordinates

v′i =

{
vi if i ∈ Sq

(1− γ)vi if i /∈ Sq.
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Then,

f q
K(v′) =

∑
i∈Sq

qi

log vi − log

∑
j∈S

Π(i, j)vj − γ
∑
j /∈Sq

Π(i, j)vj

 .

This expression is (strictly) increasing with γ, and f q
K(v′) = f q

K(v) when γ = 0. Thus there is no
maximizer of f q

K because one could always find a better v. Notice that the limit of f q
K(v′) when

γ → 1 is

lim
γ→1

f q
K(v′) =

∑
i∈Sq

qi

log vi − log

∑
j∈Sq

Π(i, j)vj

 =: gqK(v). (4.2)

The function gqK is the optimized function in the right-hand term in (4.1). Clearly,

sup
v>0

f q
K(v) = sup

v′>0
f q
K(v′) = sup

v>0
gqK(v). (4.3)

Now we want to show that gqK reaches its supremum. To do so, we will show that the research of
such a maximizer can be restricted to a compact.

First, notice that for i /∈ Sq, gqK(v) is a constant function of vi. Thus we can restrict the search
of a maximizer to vectors having coordinate vi = 1 for i /∈ Sq. Moreover, multiplying v by a
positive scalar does not change the value of gqK(v), thus we can restrict the search of a maximizer
to vectors such that mini∈Sq vi = 1. As gqK(1, . . . , 1) ≥ 0, a maximizer of gqK should belong to the
non-empty set (gqK)−1([0,∞)).

Consider some v in this set, such that mini∈Sq vi = vi1 = 1 and that i /∈ Sq ⇒ vi = 1. We are
going to find an upper bound over its coordinates (of course, independent of v). Choose any index
i2 ∈ Sq, then we define an application k by k(i1) = i2 and k(i) = i for any other index i. A sum
of non-negative terms is greater than any of its terms, so

gqK(v) =
∑
i∈Sq

qi

log vi − log
∑
j∈Sq

Π(i, j)vj


≤
∑
i∈Sq

qi

(
log vi − log

(
Π(i, k(i))vk(i)

))
=
∑
i∈Sq

qi(log vi − log vk(i))−
∑
i∈Sq

qi log
(
Π(i, k(i))

)
= qi1(log vi1 − log vi2)−

∑
i∈Sq

qi log
(
Π(i, k(i))

)
. (4.4)

As Π(i, k(i)) ≥ m = mini,j Π(i, j) > 0, this inequality yields

0 ≤ gqK(v) ≤ qi1(log vi1 − log vi2)− log(m).

Recall that we defined i1 for vi1 to be 1, so we are able to finally get 0 ≤ log vi2 ≤ − log(m)/qi1
for any i2. Thus, any coordinate of v is either 1 or in [1, exp(− log(m)/qi1)], and v lies in a
compact set. As gqK is continuous, it has a maximizer over this compact set, and therefore it has a
maximizer over {v, v > 0}. 2

Remark 4.4. The assumption (Pos) was used to get m > 0. Under only (Irr), some terms of the
sum in (4.4) might be infinite and the domination does not work anymore. The function gqK can
reach its supremum or not. Remark 4.8 below provides examples for both cases.
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Now, in order to compute K(q), we can begin to actually search for a maximizer of gqK . In the
following, as gqK stays unchanged by any modification of vi for i /∈ Sq, we project RS onto the
vector space RSq = R|Sq |, with an extracted matrix ΠSq of Π. Recall the matrix multiplication
defined previously:

(ΠSqv)i =
∑
j∈Sq

Π(i, j)vj .

Proposition 4.5. Under (Pos), gqK has a maximizer in {v ∈ RSq , v > 0}, unique up to multiplica-
tion by a scalar, and characterized by the equivalence

gqK reaches its maximum at v if and only if
qk
vk

=
∑
i∈Sq

qi
Π(i, k)

(ΠSqv)i
for all k ∈ Sq. (4.5)

The maximum of gqK is denoted by v∗, and is defined up to a scalar multiplication. By definition
and equation (4.1), K(q) = gqK(v∗).

Remark 4.6. Notice that (4.5) is actually an invariance condition on q. Denoting Q the stochastic
kernel on Sq defined by Q(i, j) = ΠSq(i, j)vj/(ΠSqv)i, the equivalence (4.5) means that gqK
reaches its maximum at v if and only if q is invariant under Q.

Remark 4.7. If Sq = S, then f q
K = gqK and Proposition 4.5 yields a characterisation of the

maximizer of f q
K , defined uniquely up to a scalar multiplication. In the following proof, it is

interesting to consider the case Sq = S. Actually, note that most of the time the measure considered
will be such that Sq = S.

Proof of Proposition 4.5. Let hqK(w) = gqK(ew) defined of RSq , so that hqK and gqK share their
supremum, and gqK(v) is maximal if and only if hqK(log v) is. Notice that adding a constant (i.e. a
vector all of whose coordinates are the same) to the argument is like multiplying the argument of
gqK by a scalar and does not change the value of hqK . The function hqK has an interesting property:
its hessian matrix is semi-negative-definite everywhere. Let us compute it.

hqK(w) =
∑
i∈Sq

qi

wi − log

∑
j∈Sq

Π(i, j)ewj

 , (4.6)

(∇hqK(w))k = qk −
∑
i∈Sq

qi
Π(i, k)ewk

(ΠSqe
w)i

, (4.7)

(HhqK(w))k,l = −
∑
i∈Sq

qiΠ(i, k)e
wk

(
Π(i, l)ewl

(ΠSqe
w)2i

− δkl
1

(ΠSqe
w)i

)
. (4.8)

Now, HhqK(w) is always a semi-negative-definite matrix: for all x ∈ RSq ,

xTHhqK(w)x =
∑
k,l

xkxlHhqK(w)k,l

=
∑
i

qi

(∑
k

Π(i, k)xke
wk

(ΠSqe
w)i

)2

−
Π(i, k)ewkx2k
(ΠSqe

w)i

 ≤ 0. (4.9)

The reason why xTHhqK(w)x is non-positive in (4.9) is Jensen inequality. Apply Jensen inequality
to the square function and to the points xk with coefficients ΠSq(i, k)e

wk/(ΠSqe
w)i to find that
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each term in the sum in (4.9) is non-positive, therefore xTHhqK(w)x is nonpositive, and HhqK(w)
is a semi-negative-definite matrix.

This grants that any critical point of hqK is a local maximizer. Now we also show that it is a global
maximizer.

Let w be a local maximizer of hqK . Let w′ be any point of RSq , and consider the function
φ(t) := hqK((1− t)w + tw′). It satisfies

φ′(t) = ∇hqK((1− t)w + tw′)(w′ − w),

φ′′(t) = (w′ − w)THhqK((1− t)w + tw′)(w′ − w) ≤ 0,

so φ′ is non-increasing. As φ′(0) = ∇hqK(w)(w′ − w) = 0 because w is a critical point, we get
φ(1) ≤ φ(0) = 0. It means that hqK(w′) ≤ hqK(w). w is a global maximizer for hqK .

We have shown that beeing a critical point of hqK is a sufficient condition to maximize hqK . With
the previous expression for ∇hqK in equation (4.7), we get the equivalence (4.5):

gqK reaches its maximum at v = ew if and only if
qk
vk

=
∑
i∈Sq

qi
ΠSq(i, k)

(ΠSqv)i
for all k ∈ Sq.

For the uniqueness, let w and w′ be global maximizers, and consider again φ(t) = hqK((1− t)w +
tw′). It satisfies φ′(0) = φ′(1) = 0. By Rolle Theorem its second derivative has to cancel out
at some t, thus for this t, φ′′(t) = (w′ − w)THhqK((1 − t)w + tw′)(w′ − w) = 0. By Jensen
inequality in the equation (4.9), this is impossible unless all the w′

k − wk are equal. This means
w′
k = wk + c for all k. Therefore, up to a constant (here, c), w is the only critical points of hqK .

Therefore it also is the only maximizer. Notice that this point relying on Jensen inequality used that
every coefficient of ΠSq is positive but not that every coeficient of Π is. 2

Remark 4.8. In the proof of equivalence (4.5), (Pos) was not actually fully used. One can weaken
the assumption with

(Pos’) ∀i, j ∈ Sq Π(i, j) > 0.

While the equivalence (4.5) remains true under (Pos’), both the existence and uniqueness of a
maximizer do not hold, in general. Let us see what happens under (Pos’). Remark 4.4 underlined
that one cannot obtain existence in the same way than in the proof Proposition 4.1. For the unique-
ness, the proof of Proposition 4.5 uses the equality case in Jensen inequality. If the coefficients of
Π are no longer assumed positive, even if (Pos’) constrains (ΠSqv)i to be positive, one does not
necessarily have Π(i, k)ewk/(ΠSqe

w)i > 0 for all k, and in particular it is possible that only one of
those coefficients is positive and all the other are null, thus cancelling our chances to use the Jensen
inequality. In our case, it would mean that the state i leads the Markov process to a certain state k
with probability 1. For instance, consider the following transition matrix mentioned in [RAS15,
Example 13.19]:

Π =


0 1 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

 , (4.10)

where the states 1 and 4 lead to states 2 and 3 respectively with probability 1. It corresponds to the
following graph:
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1 2 3 4

1 1/2 1/2

1/2 1/2 1

Take q = (12 ,
1
2 , 0, 0). Then, the function gqK(v) is given by the formula

gqK(v) =
1

2
log

v1
v2

+
1

2
log

2v2
v1

=
1

2
log 2.

It is a constant of v, and has several maximizers. Also notice that f q
K has no maximizer at all:

f q
K(v) =

1

2
log

v1
v2

+
1

2
log

2v2
v1 + v3

=
1

2
log 2 +

1

2
log

1

1 + v3/v1
.

We knew that f q
K couldn’t have maximizers because Sq ̸= S. The same Markov chain also

yields an example where the supremum of gqK is not attained, with q = (14 ,
1
4 ,

1
4 ,

1
4). The value of

gqK(v) = f q
K(v) is given by the expression

f q
K(v) =

1

2
log 2− 1

4
log
(
(1 +

v3
v1

)(1 +
v2
v4

)
)
,

that becomes greater and greater when v3
v1

or v2
v4

tends to zero.

4.2 Maximizing f q
J

One can rewrite the entire previous section with left matrix multiplication instead of right matrix
multiplication. Define gqJ by

gqJ(u) =
∑
j∈Sq

qj

log uj − log

∑
i∈Sq

uiΠ(i, j)

 . (4.11)

Proposition 4.9. Under (Pos), J(q) = supu>0 f
q
J(u) = supu>0 g

q
J(u), and gqJ has a maximizer in

{u ∈ RSq , u > 0}, unique up to multiplication by a scalar, and characterized by the equivalence

gqJ reaches its maximum at u if and only if
qk
uk

=
∑
j∈Sq

qj
Π(k, j)

(uΠSq)j
for all k ∈ Sq. (4.12)

To prove this statement, simply repeat the previous section. The maximum of gqJ , up to its
degeneration is denoted u∗. By definiton, gqJ(u

∗) = J(q). Previous remarks 4.3, 4.4, and 4.7 hold
also for J .

4.3 Minimizing f q
L

In order to understand better how f q
L can be minimized, we start by restraining its domain to

stochastic kernels over Sq. Like in the previous sections, we project the space RS on RSq . As we
will see, this is natural, because when Q is a stochastic kernel over S that stabilizes q, its lines
and columns of index outside Sq are meaningless in the computation of f q

L(Q). For this reason, Q
could be considered only over Sq. We will actually see that the extracted matrix QSq is a stochastic
kernel. In the following, we work under (Pos) assumption.
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Proposition 4.10. Let gqL be the function defined over KSq(q) (the set of stochastic kernels of Sq

that stabilize q) by

gqL(Q) =
∑

i,j∈Sq

qiQ(i, j) log
Q(i, j)

Π(i, j)
. (4.13)

Then, under (Pos), gqL and f q
L reach their respective infima and

L(q) = inf
Q∈KS(q)

f q
L(Q) = inf

Q′∈KSq (q)
gqL(Q

′). (4.14)

Remark 4.11. When Sq = S, that is to say most of the time, Proposition 4.10 is trivial because
gqL = f q

L. in the following proof, we focus on S\Sq.

Proof of Proposition 4.10. The function f q
L is continuous over KS(q) that is compact as the dimen-

sion is finite. Thus it has a minimizer. Same for gqL with the compactness of KSq(q).

Let Q be a minimizer of f q
L, and simply define Q′(i, j) = Q(i, j) for i, j ∈ Sq (that is to say Q′

is the extracted matrix QSq ). We want to show that Q′ ∈ KSq(q) and that gqL(Q
′) = f q

L(Q). First,
notice that by the invariance condition, for every j /∈ Sq,

0 = qj = (qQ)j =
∑
i∈S

qiQ(i, j) =
∑
i∈Sq

qiQ(i, j).

As qi > 0 for i ∈ Sq, the coefficients Q(i, j) must be null when i ∈ Sq and j /∈ Sq. Thus, as Q is a
stochastic kernel over S, for all i ∈ Sq,∑

j∈Sq

Q′(i, j) =
∑
j∈Sq

Q(i, j) =
∑
j∈S

Q(i, j) = 1,

and Q′ is a stochastic kernel over Sq. Second, by the invariance condition for Q, for all j ∈ Sq,

(qQ′)j =
∑
i∈Sq

qiQ(i, j) =
∑
i∈S

qiQ(i, j) = (qQ)j = qj .

Therefore, Q′ ∈ KSq(q). Finally, by removing null terms in the expression of f q
L(Q),

inf
KS(q)

f q
L = f q

L(Q) =
∑
i∈S

∑
j∈S

qiQ(i, j) log
Q(i, j)

Π(i, j)

=
∑
i∈Sq

∑
j∈S

qiQ(i, j) log
Q(i, j)

Π(i, j)

=
∑
i∈Sq

∑
j∈Sq

qiQ(i, j) log
Q(i, j)

Π(i, j)
= gqL(Q

′) ≥ inf
KSq (q)

gqL.

Now we want to prove the converse inequality. Let Q′ ∈ KSq(q) be a minimizer of gqL. We can
find Q ∈ KS(q) such that f q

L(Q) = gqL(Q
′). Indeed, let

Q(i, j) =


δij if i /∈ Sq

Q′(i, j) if i ∈ Sq, j ∈ Sq

0 else.
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This is basically extending Q′ over S by saying it should be the identity over S\Sq. One can easily
check that Q ∈ KS(q). Moreover, by removing null terms in the expression of f q

L(Q),

f q
L(Q) =

∑
i∈S

∑
j∈S

qiQ(i, j) log
Q(i, j)

Π(i, j)

=
∑
i∈Sq

∑
j∈Sq

qiQ(i, j) log
Q(i, j)

Π(i, j)

=
∑
i∈Sq

∑
j∈Sq

qiQ
′(i, j) log

Q′(i, j)

Π(i, j)
= gqL(Q

′) = inf
KSq (q)

gqL.

This shows infKS(q) f
q
L ≤ infKSq (q)

gqL, completing the proof. 2

Once again, minimizing gqL is an easier task than minimizing f q
L. One can get some explicit

necessary conditions for minimizers of gqL using the Lagrange multipliers method.2 Recall that
under (Pos), v∗ is defined as the unique (up to scalar multiplication) maximizer of gqK .

Proposition 4.12. Assume (Pos). Then the minimizer of gqL is uniquely defined by the expression

Q∗(i, j) = ΠSq(i, j)
v∗j

(ΠSqv
∗)i

, (4.15)

for i, j ∈ Sq.

Remark 4.13. If Sq ̸= S, one could extend this kernel to S with the identity over S\Sq and get
a stochastic kernel over S that minimizes f q

L. The uniqueness of the minimizer is lost though,
because the lines of index i /∈ Sq could be replaced by any non-negative line that sums up to 1
without changing the value of f q

L.

Proof of Proposition 4.12. Let us find necessary conditions on the minimizer of

ϕ : x 7→
∑

i,j∈Sq

qixij log
xij

Π(i, j)
,

over [0,∞)Sq×Sq with the following 2|Sq| constraints

1. ∀j ∈ Sq
∑

i∈Sq
qixij = qj (q is invariant by Q),

2. ∀i ∈ Sq
∑

j∈Sq
xij = 1 (each line of Q sums up to 1).

We use the Lagrange multipliers method. Let

Φ(x, λ, ν) := ϕ(x) +
∑
j∈Sq

λj

∑
i∈Sq

qixij − qj

+
∑
i∈Sq

νi

∑
j∈Sqq

xij − 1

 . (4.16)

A minimizer x of ϕ with these two constraints satisfies ∇Φ(x, λ, ν) = 0 for some (λ, ν) ∈
RSq × RSq . One has

∂Φ

∂xij
= qi

(
1 + log

xij
Π(i, j)

)
+ λjqi + νi,

2This is not the usual method to do so, because it is specific to the finite dimension. However, it is quite efficient.
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and as the partial derivative has to cancel out at (x, λ, ν), we get xij = Π(i, j) exp(−νi
qi
− λi − 1).

This yields the existence of some a, b ∈ (0,∞)Sq such that xij = Π(i, j)aibj . The constraint 2
implies that ai = (ΠSqb)

−1
i for every i, so that xij = Π(i, j)

bj
(ΠSq b)i

. Then the constraint 1 yields

∀j ∈ Sq
qj
bj

=
∑
i∈Sq

qiΠ(i, j)
1

(ΠSqb)i
(4.17)

for every j. Notice that the set of equations (4.17) is actually the right-hand side of equivalence
(4.5). It means that, up to a multiplication by a scalar, b = v∗. Therefore, x satisfies

∀i, j ∈ Sq xij = Π(i, j)
v∗j

(ΠSqv
∗)i

. (4.18)

The minimizer x is thus unique. This completes the proof because the set of x that satisfies
constaints 1 and 2 is the set KSq(q) and the restriction of ϕ to KSq(q) is gqL. 2

Remark 4.14. It is not possible to copy this reasoning with u∗ instead of v∗, because the compu-
tation of Q∗ imposes the right multiplication. The equation (4.17) comes without any choice and
favors the right matrix multiplication.

Remark 4.15. When (Pos) is removed and replaced by (Irr), one should only consider the stochastic
kernels of KSq(q) that are absolutely continuous with respect to ΠSq , otherwise gqL(Q) = +∞.

The already discussed example of a 4-state Markov chain defined by (4.10) is interesting. For
q = (14 ,

1
4 ,

1
4 ,

1
4), the only kernel which is absolutely continuous with respect to Π and stabilizes q

is

Q =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

thus it is the one to maximize f q
L. Another way to see it is that Q corresponds to the limit case of

Q(i, j) :=
Π(i,j)vj
(Πv)i

when v3 and v2 both tend to 0, which was the correct limit to consider in order
for f q

K(v) to approach its supremum.

Remark 4.16. Thanks to Proposition 4.12, the relation between Q∗ and v∗ provides a simple proof
of Proposition 3.8 under additional assumption (Pos). Let us detail its computations.

Recall Q∗ and v∗ are only defined over Sq. As q is invariant under Q∗,

K(q) = gqK(v∗) =
∑
j∈Sq

qj log
v∗j

(ΠSqv
∗)j

=
∑
j∈Sq

∑
i∈Sq

qiQ
∗(i, j) log

v∗j
(ΠSqv

∗)j

=
∑
j∈Sq

∑
i∈Sq

qiQ
∗(i, j)

(
log

Q∗(i, j)

ΠSq(i, j)
+ log

(ΠSqv
∗)i

(ΠSqv
∗)j

)
= gqL(Q

∗) + α,

with a remainder α :

α =
∑

i,j∈Sq

qiQ
∗(i, j) log((ΠSqv

∗)i)−
∑

i,j∈Sq

qiQ
∗(i, j) log((ΠSqv

∗)j).
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As the sum over the lines of Q∗ has to be 1, the first term is actually ⟨q, log(ΠSqv
∗)⟩, and as q is

invariant under Q∗, the second is actually −⟨q, log(ΠSqv
∗)⟩. The remainder α vanishes! Finally,

K(q) = gqK(v∗) = gqL(Q
∗) = L(q). (4.19)

One can notice that this computation holds when v∗ is replaced by any v and Q∗ by the stochastic
kernel Q(i, j) =

ΠSq (i,j)vj
(ΠSqv)i

, as long as Q keeps the property of stabilization of q.

4.4 Maximizing f q
I

The computations carried out in the two following remarks will be useful in the search of a
maximizer of f q

I .

Remark 4.17. Proposition 3.2 already stated that that I = K. However, the assumption (Irr)
widely simplifies its proof. Indeed, as Π is irreducible, the Perron-Frobenius Theorem provides a
Perron-Frobenius eigenvector and an useful expression for ρ(Πλ). Let us see the details.

I(q) ≤ K(q). Let λ ∈ RSq . In the proof of Proposition 3.2, we had to define a vector v as the sum
of a convergent series to get f q

I (λ) ≤ f q
K(v). Now, we can get it easily thanks to Perron-Frobenius

Theorem. Indeed, there exists v > 0 an eigenvctor of Πλ associated with the eigenvalue ρ(Πλ).
We have

f q
I (λ)− f q

K(v) =
∑
i∈S

qi log
eλi(Πv)i

vi
− log ρ(Πλ)

=
∑
i∈S

qi log
(Πλv)i

vi
− log ρ(Πλ)

=
∑
i∈S

qi log ρ(Πλ)− log ρ(Πλ) = 0. (4.20)

Thus we get f q
I (λ) = f q

K(v) ≤ K(q). Taking the supremum over λ yields the inequality I(q) ≤
K(q).

I(q) ≥ K(q). Let v > 0. Let λ be the vector of RS of coordinates λi = log ui
(uΠ)j

. Then, like in
the proof of Proposition 3.2, v = Πλv = . . . = Πn

λv. In the proof of Proposition 3.2, we used this
eigenvector property to show that log ρ(Πλ) ≤ 0. But here, the Perron-Frobenius theorem provides
an explicit expression, for any i ∈ S,

log ρ(Πλ) = lim
n→∞

1

n
log
∑
j∈S

Πn
λ(i, j)vj = lim

n→∞

1

n
log vi = 0.

Thus, we get

I(q) = sup
λ∈RSq

f q
I (λ) ≥ f q

I (λ) = ⟨λ, q⟩ − 0 =
∑
i∈S

qi log
vi

(Πv)i
= f q

K(v). (4.21)

Taking the supremum over v yields I(q) ≥ supu>0 f
q
K(v) = J(q).

Remark 4.18. Assumption (Irr) not only brings the Perron-Frobenius Theorem, but also implies
that uΠ > 0 for u > 0, according to Remark 3.1. Thus, in the proof of Proposition 3.3, one gets
S′ = S and it is possible to simply copy the arguments used for I = K to get a simple proof of
I = J . The arguments of the above remark 4.17 are also in force.
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We can now begin to search a maximizer of f q
I . First, notice that whenever a constant c is added to

λ in the argument of f q
I , one gets

f q
I (c+ λ) = ⟨λ, q⟩+ c− log ρ(Πλ+c).

As Πλ+c = ecΠλ has as spectral radius of ecρ(Πλ),

f q
I (c+ λ) = ⟨λ, q⟩+ c− (log ρ(Πλ) + c) = f q

I (λ).

A vector λ that maximizes f q
I would only be determined up to an additive constant. We do not

know yet whether such a λ exists, i.e. whether f q
I reaches its supremum.

Like in the previous sections, restraining the domain of Π to Sq allows us to find maximizers. For
every λ ∈ RSq , let

gqI (λ) := ⟨λ, q⟩ − log ρ(Πλ
Sq
) =

∑
i∈Sq

λiqi − log ρ(Πλ
Sq
), (4.22)

where Πλ
Sq

is the matrix of coefficients eλiΠ(i, j) for i, j ∈ Sq. Small changes in the proof in
Remark 4.17 lead to the following statement. Recall v∗ is the maximizer of gqK defined up to scalar
multiplication.

Proposition 4.19. Assume (Pos) is satisfied. Define λ∗ by

∀i ∈ Sq λ∗
i = log

v∗i
(ΠSqv

∗)i
. (4.23)

It is the only maximizer of gqI , up to an additive constant, and it satisfies

gqI (λ
∗) = sup

λ∈RSq

gqI (λ) = sup
λ∈RS

f q
I (λ) = I(q). (4.24)

If Sq = S, then f q
I = gqI , implying the following corollary.

Corollary 4.20. Assume Sq = S and (Pos) are satisfied. Define λ∗ by

∀i ∈ S λ∗
i = log

v∗i
(Πv∗)i

. (4.25)

It is the only maximizer of f q
I , up to an additive constant.

Remark 4.21. λ∗ and q are actually in convex duality with respect to λ 7→ log ρ(Πλ).

Proof of Proposition 4.19. By Lemma 2.5, the function λ 7→ log ρ(Πλ
Sq
) is strictly convex, thus

gqI is striclty concave (in the sense of Lemma 2.5) and has at most one maximizer up to additive
constant. We show that supλ∈RSq g

q
I (λ) ≤ I(q). Let λ ∈ RSq and let v be an eigenvector of Πλ

Sq

associated with the eigenvalue ρ(Πλ
Sq
), which exists thanks to the Perron-Frobenius theorem. Like

in the computation (4.20), one has

gqI (λ)− gqK(v) =
∑
i∈Sq

qiλi −
∑
i∈Sq

qi log
vi

(ΠSqv)i
− log ρ(Πλ

Sq
)

=
∑
i∈Sq

qi log
eλi(ΠSqv)i

vi
− log ρ(Πλ

Sq
)

=
∑
∈Sq

qi log
(Πλ

Sq
v)i

vi
− log ρ(Πλ

Sq
)

=
∑
i∈Sq

qi log ρ(Π
λ
Sq
)− log ρ(Πλ

Sq
) ≤ 0. (4.26)
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It means gqI (λ) ≤ gqK(v) ≤ K(q). As I(q) = K(q) by Proposition 3.3, we just showed that
supλ∈RSq g

q
I (λ) ≤ I(q). Now we can show that the bound I(q) is reached to complete the proof.

Under (Pos), the maximizer v∗ of gqK exists. Let (4.23) define λ∗ over Sq. We have

(Πλ∗
Sq
v∗)i =

∑
j∈Sq

Π(i, j)
v∗i

(ΠSqv
∗)i

v∗j =
v∗i

(ΠSqv
∗)i

(ΠSqv
∗)i = v∗i .

Thus v∗ is an eigenvector of Πλ∗
Sq

of eigenvalue 1. By the Perron-Frobenius theorem, it implies that

log ρ(Πλ∗
Sq
) = lim

n→∞

1

n
log vi = 0.

Therefore,

gqI (λ
∗) = ⟨λ∗, q⟩ =

∑
i∈Sq

qi log
v∗i

(ΠSqv
∗)i

= gqK(v∗) = K(q) = I(q). (4.27)

The maximum is reached. 2

Remark 4.22. Once again, the study of gqI can be understood as the limit case in the study of f q
I ,

where λ is allowed to have −∞ coefficients. By convention, 0 × ∞ = 0. Take λ = −∞ over
S\Sq. Each line of index i /∈ Sq is a null line, thus Πλ is no longer irreducible. However,

Π2
λ(i, j) =

∑
k∈S

Πλ(i, k)Πλ(k, j) =
∑
k∈Sq

Πλ(i, k)Πλ(k, j).

When i /∈ Sq, every term is null thus Π2
λ(i, j) = 0 and by recurrence Πn

λ(i, j) = 0, and when
i, j ∈ Sq, this is exactly (Πλ

Sq
)2(i, j), so by recurrence Πn

λ(i, j) = (Πλ
Sq
)n(i, j). Thus Πn

λ behaves
asymptotically like (Πλ

Sq
)n, so their spectral radius should intuitively be the same. This says that

f q
I (λ) = gqI (λ), and helps us understand the reason why gqI is useful here.

The previous reasonings holds when replacing the right multiplication by the left multiplication,
thus comparing f q

I (λ) to f q
J(u) and gqI (λ) to gqJ(u). It leads to the following conclusion.

Proposition 4.23. Under (Pos) assumption, gqI has a unique maximizer λ∗ up to additive constant,
and the relation

∀i ∈ S λ∗
i = log

u∗i
(u∗Π)i

= log
v∗i

(Πv∗)i
, (4.28)

is satisfied up to additive constants.

4.5 The Perron-Frobenius point of view

Seeing the previous maximizers as Perron-Frobenius eigenvectors can be quite relevant in order to
understand the links between the four rate functions. In the following, assume (Irr) is satisfied.

When λ is fixed, we denote by σ/s the left/right Perron-Frobenius eigenvector of Πλ, and we fix
one degenerescence in their definition by requiring ⟨σ, s⟩ = 1. The vectors σ and s are positive,
and point out a relation between f q

I , f q
J and f q

K . Recall D = diag(eλ1 , . . . , eλN ).

Lemma 4.24. Let q ∈ M1(S). Then f q
I (λ) = f q

J(Dσ) = f q
K(s).
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Proof. This comes from

f q
K(s) =

∑
i

qi log
si

(Πs)i

=
∑
i

qi

(
λi + log

si
(Πλs)i

)
=
∑
i

qi

(
λi + log

si
ρ(Πλ)si

)
= ⟨q, λ⟩ − log ρ(Πλ)

= f q
I (λ). (4.29)

A similar computation with left matrix multiplication and Dσ yields f q
J(Dσ) = f q

I (λ). 2

Proposition 4.25. Assume (Pos) and Sq = S are satisfied. Let σ∗/s∗ be the left/right Perron-
Frobenius eigenvectors of Πλ∗ . Then, up to scalar multiplication Dσ∗ = u∗ and s∗ = v∗.

Proof. When Sq = S, v∗ is the unique maximizer of gqK = f q
K , up to scalar multiplication.

In one hand, by Proposition 4.23, λ∗ defined by λ∗
i = log

v∗i
(Πv∗)j

maximizes f q
I , meaning that

f q
I (λ

∗) = I(q) = K(q). In the other hand, if s∗ is the right Perron-Frobenius eigenvector of
Πλ∗ , Lemma 4.24 yields that fK(s∗) = f q

I (λ
∗). Therefore s∗ = v∗ up to scalar multiplication.

Symmetrically, Dσ∗ = u∗ up to scalar multiplication. 2

With the constraint ⟨σ, s⟩ = 1, one could consider the probability measure q defined by qi = σisi.
It has all of its coordinates positive. An interesting fact is that for this specific q, maximizers of f q

i ,
f q
J , f q

K , and f q
L exist and are easily derived from σ and s.

Proposition 4.26. Define a probability measure q by qi = σisi. Then, under (Irr), f q
i , f q

J , f q
K , and

f q
L reach their optima respectively at λ∗, u∗, v∗, and Q∗ defined by

λ∗
i = λi

u∗i = eλiσi

v∗i = si

Q∗(i, j) =
Π(i,j)sj
(Πs)i

.

(4.30)

Proof. Consider the stochastic kernel Q(i, j) =
Π(i,j)sj
(Πs)i

=
Πλ(i,j)sj
ρ(Πλ)si

. It stabilizes q. Indeed, as
Π(i, j) = e−λiρ(Πλ)Q(i, j) sisj , the left eigenvector equation for Πλ leads to

ρ(Πλ)σj =
∑
i

σie
λiΠ(i, j) =

∑
i

σiρ(Πλ)Q(i, j)
si
sj
,

which reformulates after simplifications as qj =
∑

iQ(i, j)qi. Thus, according to remark 4.6 and
equivalence (4.5), s maximizes f q

K . v∗ exists, and up to the degenerescences in the definitions of
v∗ and s, we have s = v∗. According to the equation (4.15), the kernel Q also minimizes f q

L. Now
thanks to Propositions 3.2 and 3.3 and Lemma 4.24,

I(q) = J(q) = K(q) = f q
K(s) = f q

J(Dσ) = f q
I (λ),

so Dσ maximizes f q
J and λ maximizes f q

I . 2
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In conclusion, when the probability vector q can be described as the coefficient-by-coefficeint
product of the left/right Perron-Frobenius eigenvectors of a certain Πλ, every extremum defining
the four rate functions is attained, by quantities depending only on the eigenvectors, even without
assuming Π positive.

5 Summary of the previous sections

Here we wrap up the previous sections in a few propositions.

Proposition 5.1. If Π is a stochastic kernel, then I = J = K = L.

Proposition 5.2. Under assumption (Irr), the LDP holds for LX
n with rate function I = J =

K = L.

Proposition 5.3. Under assumption (Pos), the function I = J = K = L is finite over M1(S).
The functions gqI , gqJ , gqK , and gqL have unique optimizers λ∗, u∗, v∗, and Q∗ respectively, which
satisfy: Q∗(i, j) = Π(i, j)

v∗j
(ΠSqv

∗)i

λ∗
i = c+ log

v∗i
(Πv∗)i

= c′ + log
u∗
i

(u∗
iΠ)i

(5.1)

Two more propositions helps us understand the optimizers and the links between them when q
satisfies some constraints. Let q ∈ M1(S).

Proposition 5.4. Under assumptions (Irr) and q = σs for a certain λ, where σ and s are the left
and right Perron-Frobenius eigenvectors of Πλ, then I(q), J(q), K(q), and L(q) are finite, and f q

i ,
f q
J , f q

K , and f q
L reach their optima respectively at λ∗, u∗, v∗, and Q∗ defined by

λ∗
i = λi

u∗i = eλiσi

v∗i = si

Q∗(i, j) =
Π(i,j)sj
(Πs)i

.

(5.2)

Proposition 5.5. Under assumptions (Pos) and Sq = S, the functions f q
I , f q

J , f q
K , and f q

L have
unique optimizers λ∗, u∗, v∗, and Q∗ respectively, which satisfy:

λ∗
i = c+ log

v∗i
(Πv∗)i

= c′ + log
u∗
i

(u∗
iΠ)i

Q∗(i, j) = Π(i, j)
v∗j

(Πv∗)i

v∗i = s∗i
u∗i = eλ

∗
i σ∗

i .

(5.3)

6 Additional examples

6.1 Irreducible Markov chains on a two-states space

Let us consider a Markov chain X on a two-states space. Its transition matrix is denoted Π :=(
p 1− p

1− p′ p′

)
, and the Markov chain is irreducible iff p and p′ are strictly lower than 1. Then
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Proposition 5.2 hold, and there is a LDP with rate function I = J = K = L. One may compute K
over the set of probability vectors for 0 < p, p′ < 1.

Proposition 6.1. If 0 < p, p′ < 1, then LX
n satisfies a LDP with rate function I = J = K = L.

Moreover, for q of positive coordinates,

K(q) = q1 log
1

p+ (1− p)α
+ q2 log

α

(1− p′) + p′α
,

where α =
(1− p)(1− p′)(q2 − q1) +

√
(1− p)2(1− p′)2(q1 − q2)2 + 4q1q2pp′(1− p)(1− p′)

2q1(1− p)p′
.

(6.1)

If both p and p′ are null the rate function derives from the expression of L: unless q1 = q2 = 1
2 ,

there is no stochastic kernel that stabilizes q while beeing absolutely continuous with respect to Π.
Thus the infimum is +∞, and the rate function is

L = ∞× 1M1(S)\{( 12 ,
1
2
)}. (6.2)

Proposition 6.2. If p = p′ = 0, then LX
n satisfies a LDP with rate function I = J = K = L =

∞× 1M1(S)\{( 12 ,
1
2
)}.

Note that in this case one can obtain the LDP without Proposition 5.2. If both p and p′ are null,
then LY

n is a deterministic sequence that converge to (12 ,
1
2) at rate 1

n once the initial state is known,
so there is a LDP with rate function ∞× 1M1(S)\{( 12 ,

1
2
)}.

The last irreducible case is when only one of them, say p′, is null. We compute L(q): a stochastic

kernel Q absolutely continuous with respect to Π and stabilizing q can be written Q =

(
x 1− x
1 0

)
with {

q1 = xq1 + q2

q2 = (1− x)q1.

Thus if q2 > q1 there is no such Q and L(q) = +∞, and else there is only one Q determined by
x = 1− q2

q1
, so

L(q) = f q
L(Q) = −q1 log(q1p) + (q1 − q2) log(q1 − q2) + q2 log(q2).

Proposition 6.3. If p′ = 0, then then LX
n satisfies a LDP with rate function I = J = K = L with

expression
L(q) = −q1 log(q1p) + (q1 − q2) log(q1 − q2) + q2 log(q2). (6.3)

6.2 The non-irreducible cases on a two-states space

In the reducible cases, Section 5 do not guarantee that the rate functions are equal, neither that a
LDP holds. The only values of (p, p′) that lead to a non-irreducible case are

• when p = p′ = 1,

• when only one of them, say p′, is equal to 1.

Start with the case p = p′ = 1, that is to say Π = id2.
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Proposition 6.4. If p = p′ = 1, then LX
n satisfies a LDP with rate function Iµ0 depending on the

initial measure µ0.

• If µ0 charges both points, then Iµ0 = ∞× 1M1(S)\{(1,0),(0,1)}.

• If µ0 = δ2, then Iµ0 = ∞× 1M1(S)\{(0,1)}.

• If µ0 = δ1, then Iµ0 = ∞× 1M1(S)\{(1,0)}.

Proof. The Markov chain X is actually deterministic and satisfies ∀n ∈ N Xn = X1. Thus if µ0

charges both states, LX
n has values in {(1, 0), (0, 1)} and its distribution does not change with n, so

there is a LDP with rate function Iµ0 = ∞× 1M1(S)\{(1,0),(0,1)}. If µ0 only charges 1, then all Xn

are 1 almost surely and LX
n = (1, 0), so the LDP holds with rate function Iδ1 = ∞×1M1(S)\{(0,1)}.

Same if it only charges 2, with rate function Iδ2 = ∞× 1M1(S)\{(1,0)}. 2

Remark 6.5. Let us compute I, J , K, and L, anyway. Start with f q
I (λ) = (λ1−λ2)(q11{λ1≤λ2}−

q21{λ2≤λ1}), so f q
I is maximized at λ = 0 with f q

I (0) = 0, so I(q) = 0. the functions f q
K and

f q
J are both null for any q, thus K = J = 0 uniformly. As for L, the only stochastic kernel

absolutely continuous with respect to Π is Π = id2 itself. It sure stabilizes any measure q, so
L(q) = f q

L(id2) = 0. All four function are uniformly null over the set of probability measures.
They are not equal to Iµ0 . Actually, they could not be associated with a LDP here, because the rate
function of such a LDP has to be highly dependent the initial measure µ0! The probability to be in
state i at time n is µ0(i) independently of n.

This case yields an example of a Markov chain for which rate functions I , J , K, L are not the ones
associated with the LDP. It underlines that (Irr) is important for Proposition 5.2.

Now we consider the case of one transient state, with Π =

(
p 1− p
0 1

)
and 0 < p < 1.

Proposition 6.6. If p′ = 0 and 0 < p < 1, and if µ0 charges the first state 1, then LX
n satisfies a

LDP with rate function q 7→ −q1 log(p). If p′ = 0 and 0 < p < 1 and µ0 = δ2, then a LDP holds
with rate function ∞× 1M1(S)\{(0,1)}.

Proof. If µ0(1) > 0, the trajectory is entirely determined by the amount of time spent in the first
state, which is geometrical. One has

P
(
LX
n =

(
k

n
,
1− k

n

))
= µ0(1)p

k−1(1− p).

With kn = ⌊nq1⌋, we get

P(LX
n (1) ≥ q1) = P

(
LX
n (1) ≥ kn

n

)
=

∞∑
i=kn

µ0(1)× pi−1(1− p) = p⌊nq1⌋µ0(1).

In an exponential scale, this means that LX
n satisfies a LDP with rate function q 7→ −q1 log p.

If µ0 does not charge the first state, LX
n = (0, 1) almost surely, and a LDP holds with rate function

∞× 1M1(S)\{(0,1)}. 2

Remark 6.7. Let us compute the four previous functions. The rate function I is given by:

f q
I (λ) =

{
q2(λ2 − λ1)− log p if λ1 ≥ λ2 − log p

q1(λ1 − λ2) else
≤ −q1 log p.
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As f q
I ((− log p, 0)) = −q1 log p, it reaches its maximum and I(q) = −q1 log(p). The rate function

K yields the same expression, because it is given by

f q
K(v) = −q1 log

(
p+ (1− p)

v2
v1

)
.

This has no maximizer but tends to its supremum when v2
v1

→ 0, and so K(q) = −q1 log(p).
Similar computations also yield J(q) = −q1 log(p).

As for L, if q is a probability measure, once again the only stochastic kernel that is simulaneously
absolutely continuous with respect to Π and a stabilizator of q is id2. Thus L(q) = f q

L(id2) =
−q1 log(p).

Once again, the four rate functions are equal. But this time they actually are associated with the
LDP for LX

n , under the condition that µ0 charges the first state. Even if (Irr) is not satisfied, the
conclusion of Proposition 5.2 holds.

Remark 6.8. Notice that in the previous examples, even when I is not the rate function associated
with the LDP, it is still its convex hull over the M− 1(q). This is a deep observation and it could
be generalized as by equation (2.5), I is the Legendre-Fenchel transform of the pressure associated
with the system.

6.3 The i.i.d. case

If Π has all its lines identical, then X is a sequence of i.i.d. random variables. Assume Π is a
positive matrix, and let r denote the first line of Π: it is the law of those random variables. One
should recover the Sanov theorem for i.i.d. random variables on a finite alphabet i.e. that LX

n

satisfies a LDP with rate function H( · |r).

Theorem 6.9 (Sanov). If (Xn) is a sequence of i.i.d. random variables of common law r over the
finite state space S, then LX

n satisfies a LDP with rate function H(·|r), where

H(q|r) =

{∑
i∈S qi log

qi
ri

if q ≫ r

+∞ else.
(6.4)

Proof. Assume r charges every state. Then (Pos) is satisfied. By Proposition 5.3, LX
n satisfies a

LDP with rate function I = J = K = L. Then,

J(q) = sup
u>0

∑
j

qj log
uj

(uΠ)j

= sup
u>0

∑
j

qj log
uj

rj |u|1

= sup
u′>0
|u′|=1

∑
j

qj log
u′j
rj

= sup
u′∈M1(S)

∑
j

qj log
u′j
rj

.

The supremum is reached at u′ = q because∑
j

qj log
qj
rj

−
∑
j

qj log
u′j
rj

=
∑
j

qj log
qj
u′j

= H(q|u′) ≥ 0,



31

with equality if and only if u′ = q. Thus

J(q) =
∑
j

qj log
qj
rj

= H(q|r). (6.5)

This achieves to prove the Sanov theorem for i.i.d random variables over a finite alphabet if r
charges every state.

Whenever it does not, Π is not irreducible, but one can restrict the computation to a bloc of Π that
is irreducible and positive, starting from time n = 2. 2
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