Algèbres cellulaires - Séminaire M2 Recherche

Antoine Dequay - Encadré par Salim Rostam

31 décembre 2021

Le but de ce séminaire est de démontrer le théorème 2.3, qui donne un lien entre les algèbres cellulaires et la classification des A-modules irréductibles. Dans un second temps, on s'attardera sur un exemple particulier d'algèbre cellulaire : l'algèbre d'IWAHORI-HECKE du groupe symétrique. La trame de ce rapport est inspirée de [Mat99], et la notion d'algèbre cellulaire a été introduite dans [GL96].

Table des matières

- 1 Algèbres cellulaires 1
- 2 Le théorème de Graham-Lehrer 6
- 3 Exemple : l'algèbre d'IWAHORI-HECKE du groupe symétrique 8

1 Algèbres cellulaires

Notation. Soit R un anneau intègre, A une R-algèbre 1 , libre en tant que R-module et (Λ, \geq) un ensemble fini partiellement ordonné.

On suppose de plus que pour tout $\lambda \in \Lambda$, il existe un ensemble fini $\mathcal{T}(\lambda)$ et des éléments $c_{\mathfrak{st}}^{\lambda} \in A$ pour tout $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ tel que :

$$\mathscr{C} = \left\{ c_{\mathfrak{st}}^{\lambda}, \lambda \in \Lambda, \ \mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda) \right\}$$

est une base (libre) de A.

On note enfin, pour $\lambda \in \Lambda$, \hat{A}^{λ} le R-sous-module de A de base $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu}, \mu \in \Lambda, \mu > \lambda, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)\}$ et A^{λ} le R-sous-module de A de base $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu}, \mu \in \Lambda, \mu \geq \lambda, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)\}$.

^{1.} R comme ring, A comme $alg\`{e}bre$

Dans la suite, on se donne toujours $\lambda \in \Lambda$.

En réalité, pour les théorèmes qui nous intéressent, on supposera que R est un corps.

Remarque. On a $\hat{A}^{\lambda} \subset A^{\lambda}$ et $A^{\lambda}/\hat{A}^{\lambda}$ a pour base $\left\{c_{\mathfrak{st}}^{\lambda} + \hat{A}^{\lambda}, \mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)\right\}$.

Définition 1.1 (Bases cellulaire). On dit que (\mathscr{C}, Λ) est une base cellulaire de A si :

- 1. l'application R-linéaire déterminée par $*: \begin{pmatrix} A & \longrightarrow & A \\ c_{\mathfrak{s}\mathfrak{t}}^{\lambda} & \longmapsto & c_{\mathfrak{t}\mathfrak{s}}^{\lambda} \end{pmatrix}$ pour tout $\lambda \in \Lambda$ et $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$, est un anti-isomorphisme d'algèbre de A,
- 2. pour tout $\lambda \in \Lambda$, $\mathfrak{t} \in \mathcal{T}(\lambda)$ et $a \in A$, il existe $(r_{\mathfrak{v}}) \in R^{\mathcal{T}(\lambda)}$ tel que pour tout $\mathfrak{s} \in \mathcal{T}(\lambda)$,

$$c_{\mathfrak{st}}^{\lambda} a \equiv \sum_{\mathfrak{v} \in \mathcal{T}(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{sv}}^{\lambda} \mod \hat{A}^{\lambda}.$$
 (1)

Définition 1.2 (Algèbre cellulaire). Si A possède une base cellulaire, on dit que A est une Algèbre cellulaire.

Remarque. Une algèbre cellulaire peut avoir plusieurs bases cellulaires!

Exemple 1.3. On peut prendre $A = R[X]/(X^n)$ (X indéterminée) et $(\Lambda, \geq) = (\llbracket 0, n-1 \rrbracket, \geq)$. En prenant $\mathcal{T}(i) = \{i\}$ et $c_{ii}^i = X^i$ pour tout $n \in \llbracket 0, n-1 \rrbracket$,

$$\{X^n, n\in \mathbb{N}\}$$

est une base cellulaire de A.

Exemple 1.4. On peut prendre $A = M_{n,n}(R)$, $\Lambda = \{n\}$ et $\mathcal{T}(n) = [1, n]$. Avec $c_{ij}^n = E_{ij}$ les matrices élémentaires, pour $1 \le i, j \le n$,

$$\{E_{ij}, (i,j) \in [1,n]^2\}$$

est une base cellulaire de A.

Proposition 1.5. Par le théorème d'ARTIN-WEDDERBURN ², toute algèbre semi-simple est cellulaire.

Commençons par quelques propriétés élémentaires.

Lemme 1.6. Soit $\lambda \in \Lambda$.

1. Supposons que $\mathfrak{s} \in \mathcal{T}(\lambda)$ et $a \in A$. Alors, pour tout $\mathfrak{t} \in \mathcal{T}(\lambda)$,

$$a^* c_{\mathfrak{st}}^{\lambda} \equiv \sum_{\mathfrak{u} \in \mathcal{T}(\lambda)} r_{\mathfrak{u}} c_{\mathfrak{ut}}^{\lambda} \mod \hat{A}^{\lambda},$$

où les $r_{\mathfrak{u}} \in R$ sont déterminés par (1),

^{2.} Admis : A est isomorphe à un produit d'espace de matrices carrées à valeurs dans des corps (commutatifs ou non).

- 2. A^{λ} et \hat{A}^{λ} sont des idéaux (à droite et à gauche) de A,
- 3. Soient $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$, alors il existe $r_{\mathfrak{s}\mathfrak{t}} \in R$ tel que pour tout $\mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\lambda)$,

$$c_{\mathfrak{u}\mathfrak{s}}^{\lambda}c_{\mathfrak{t}\mathfrak{v}}^{\lambda}\equiv r_{\mathfrak{s}\mathfrak{t}}c_{\mathfrak{u}\mathfrak{v}}^{\lambda}\mod \hat{A}^{\lambda}.$$

Preuve. Le premier point s'obtient en appliquant * à (1). Grâce aux deux équations, on a bien mis en évidence que A^{λ} est un idéal à droite et à gauche de A. Comme $\hat{A}^{\lambda} = \sum_{\mu > \lambda} A^{\mu}$, le second point s'en suit. Enfin, en utilisant toujours les 2 équations, on a, pour $\mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\lambda)$:

$$c_{\mathfrak{us}}^{\lambda}c_{\mathfrak{tv}}^{\lambda} \equiv \sum_{\mathfrak{w}\in\mathcal{T}(\lambda)} r_{\mathfrak{w}}c_{\mathfrak{uw}}^{\lambda} \mod \hat{A}^{\lambda}$$
$$= c_{\mathfrak{su}}^{\lambda*}c_{\mathfrak{tv}}^{\lambda} \equiv \sum_{\mathfrak{w}\in\mathcal{T}(\lambda)} r_{\mathfrak{w}}c_{\mathfrak{wv}}^{\lambda} \mod \hat{A}^{\lambda}.$$

La base cellulaire étant libre, il ne reste qu'à identifier les $r_{\mathfrak{w}}$ pour conclure.

Remarque.

- Au travers des A^{λ} , la base cellulaire détermine une filtration de A.
- Il existe une forme bilinéaire définie sur chaque quotient $A^{\lambda}/\hat{A}^{\lambda}$ de la filtration (voir $r_{\mathfrak{st}}$). On y reviendra par la suite.

Définition 1.7 $(C_{\mathfrak{s}}^{\lambda})$. Pour $\lambda \in \Lambda$ fixé et $\mathfrak{s} \in \mathcal{T}(\lambda)$, on définit $C_{\mathfrak{s}}^{\lambda}$ le R-sous-module de $A^{\lambda}/\hat{A}^{\lambda}$ ayant pour base $\left\{c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \hat{A}^{\lambda}, \mathfrak{t} \in \mathcal{T}(\lambda)\right\}$.

Remarque. $C_{\mathfrak{s}}^{\lambda}$ est un A-module à droite d'après (1), et l'action de A sur $C_{\mathfrak{s}}^{\lambda}$ est indépendante de \mathfrak{s} . Ainsi, pour tout $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda), C_{\mathfrak{s}}^{\lambda} \cong C_{\mathfrak{t}}^{\lambda}$.

On définit donc :

Définition 1.8 (Module cellulaire C^{λ}). On définit le module cellulaire C^{λ} comme le A-module à droite, libre en tant que R-module de base $\{c_{\mathfrak{t}}^{\lambda}, \mathfrak{t} \in \mathcal{T}(\lambda)\}$, où, pour $a \in A$:

$$c_{\mathfrak{t}}^{\lambda} a = \sum_{\mathfrak{v} \in \mathcal{T}(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{v}}^{\lambda}, \tag{2}$$

où les $r_{\mathfrak{v}} \in R$ sont déterminés par (1).

Proposition 1.9. L'application R-linéaire déterminée par $\begin{pmatrix} C^{\lambda} & \longrightarrow & C_{\mathfrak{s}}^{\lambda} \\ c_{\mathfrak{t}}^{\lambda} & \longmapsto & c_{\mathfrak{s}\mathfrak{t}}^{\lambda} + \hat{A}^{\lambda} \end{pmatrix}$ montre que pour tout $\mathfrak{s} \in \mathcal{T}(\lambda), C^{\lambda} \cong C_{\mathfrak{s}}^{\lambda}$.

Remarque. L'équation (2) définit une action de A sur C^{λ} .

Proposition 1.10. Grâce à la définition 1.7 et la propriété 1.9, on a :

$$A^{\lambda}/\hat{A}^{\lambda} \cong \bigoplus_{\mathfrak{s}\in\mathcal{T}(\lambda)} C_{\mathfrak{s}}^{\lambda} \cong \bigoplus_{i=1}^{|\mathcal{T}(\lambda)|} C^{\lambda}.$$
 (3)

Voyons maintenant un lemme technique, qui sera utile dans la suite :

Lemme 1.11. Soient $a \in C^{\lambda}$ et $y \in A^{\mu}$. Si $ay \neq 0$, alors $\lambda \geq \mu$.

Preuve. Soit $\mathfrak{s} \in \mathcal{T}(\lambda)$, on identifie C^{λ} et $C^{\lambda}_{\mathfrak{s}}$. Par définition, ay = 0 pour tout $a \in C^{\lambda}_{\mathfrak{s}}$ si et seulement si $c^{\lambda}_{\mathfrak{s}\mathfrak{t}}y \in \hat{A}^{\lambda}$ pour tout $\mathfrak{t} \in \mathcal{T}(\lambda)$, par le lemme 1.6. Toujours par ce lemme, A^{λ} et A^{μ} sont des idéaux de A, donc $c^{\lambda}_{\mathfrak{s}\mathfrak{t}}y \in A^{\lambda} \cap A^{\mu} \subseteq \hat{A}^{\lambda}$ si $\lambda \not\geq \mu$, ce qui termine la preuve.

Revenons à la forme bilinéaire remarquée plus haut :

Définition 1.12 ($\langle \cdot, \cdot \rangle$). Par le lemme 1.6 (voir $r_{\mathfrak{s}\mathfrak{t}}$), il existe une unique application bilinéaire $\langle \cdot, \cdot \rangle : C^{\lambda} \times C^{\lambda} \to R$ tel que pour tout $\mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\lambda)$, on ait :

$$\langle c_{\mathfrak{s}}^{\lambda}, c_{\mathfrak{t}}^{\lambda} \rangle c_{\mathfrak{u}\mathfrak{p}}^{\lambda} \equiv c_{\mathfrak{u}\mathfrak{s}}^{\lambda} c_{\mathfrak{t}\mathfrak{p}}^{\lambda} \mod \hat{A}^{\lambda}.$$

On peut tout d'abord regarder quelques propriétés de calculs liées à cette définition :

Proposition 1.13. Soient $\lambda \in \Lambda$ et $x, y \in C^{\lambda}$. On a :

- $\langle x, y \rangle = \langle y, x \rangle,$
- $-\langle xa, y \rangle = \langle x, ya^* \rangle$ pour tout $a \in A$,
- $-xc_{\mathfrak{u}\mathfrak{v}}^{\lambda} = \langle x, c_{\mathfrak{u}}^{\lambda} \rangle c_{\mathfrak{v}}^{\lambda} \text{ pour tout } \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\lambda).$

Preuve. L'application $\langle \cdot, \cdot \rangle$ étant bilinéaire, il suffit de prouver les résultats pour $x = c_{\mathfrak{s}}^{\lambda}$ et $y = c_{\mathfrak{t}}^{\lambda}$ pour $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ fixés. Soient $\mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\lambda)$, on a :

$$\left\langle c_{\mathfrak{s}}^{\lambda}, c_{\mathfrak{t}}^{\lambda} \right\rangle c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \equiv c_{\mathfrak{u}\mathfrak{s}}^{\lambda} c_{\mathfrak{t}\mathfrak{v}}^{\lambda} = \left(c_{\mathfrak{v}\mathfrak{t}}^{\lambda} c_{\mathfrak{s}\mathfrak{u}}^{\lambda} \right)^{*} \equiv \left(\left\langle c_{\mathfrak{t}}^{\lambda}, c_{\mathfrak{s}}^{\lambda} \right\rangle c_{\mathfrak{v}\mathfrak{u}}^{\lambda} \right)^{*} = \left\langle c_{\mathfrak{t}}^{\lambda}, c_{\mathfrak{s}}^{\lambda} \right\rangle c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \mod \hat{A}^{\lambda}.$$

De même:

$$\left\langle c_{\mathfrak{s}}^{\lambda}a, c_{\mathfrak{t}}^{\lambda}\right\rangle c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \equiv \left(c_{\mathfrak{u}\mathfrak{v}}^{\lambda}a\right) c_{\mathfrak{t}\mathfrak{v}}^{\lambda} = c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \left(ac_{\mathfrak{t}\mathfrak{v}}^{\lambda}\right) \equiv \left\langle c_{\mathfrak{s}}^{\lambda}, c_{\mathfrak{t}}^{\lambda}a^{*}\right\rangle c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \mod \hat{A}^{\lambda}.$$

Le dernier point est évident via l'identification de la propriété 1.9.

Remarque. En particulier, on a montré que $\langle \cdot, \cdot \rangle$ est symétrique et associative.

Utilisons maintenant cette forme pour définir des objets, centraux dans le théorème qui nous intéresse.

Définition 1.14 (Radical et D^{λ}). On définit rad $C^{\lambda} := \{x \in C^{\lambda}, \forall y \in C^{\lambda}, \langle x, y \rangle = 0\}$. Par la proposition 1.13, rad C^{λ} est un A-sous-module de C^{λ} . On peut donc également définir $D^{\lambda} := C^{\lambda}/\operatorname{rad} C^{\lambda}$.

Notation. On note $\Lambda_0 := \{ \mu \in \Lambda, D^{\mu} \neq 0 \}$.

Remarque. On a : $\mu \in \Lambda_0$ si et seulement si $\langle \cdot, \cdot \rangle$ est non nulle sur C^{μ} .

Proposition 1.15. Supposons que R soit un corps, et soit $\mu \in \Lambda_0$. Alors le A-module droit D^{μ} est absolument irréductible.

Preuve. Soit $x \in C^{\mu} \setminus \operatorname{rad} C^{\mu}$, $x \neq 0$. Alors il existe $y \in C^{\mu}$ tel que $\langle x, y \rangle \neq 0$. R étant un corps, on peut supposer $\langle x, y \rangle = 1$. On écrit $y = \sum_{\mathfrak{s} \in \mathcal{T}(\mu)} r_{\mathfrak{s}} c_{\mathfrak{s}}^{\mu}$ pour $(r_{\mathfrak{s}}) \in R^{\mathcal{T}(\mu)}$, puis on pose, pour

chaque $\mathfrak{t} \in \mathcal{T}(\mu)$ $y_{\mathfrak{t}} = \sum_{\mathfrak{s} \in \mathcal{T}(\mu)} r_{\mathfrak{s}} c_{\mathfrak{s}\mathfrak{t}}^{\mu} \in A$. Par la proposition 1.13, on a :

$$xy_{\mathfrak{t}} = \sum_{\mathfrak{s} \in \mathcal{T}(\mu)} r_{\mathfrak{s}} x c_{\mathfrak{s}\mathfrak{t}}^{\mu} = \sum_{\mathfrak{s} \in \mathcal{T}(\mu)} r_{\mathfrak{s}} \left\langle x, c_{\mathfrak{s}}^{\mu} \right\rangle c_{\mathfrak{t}}^{\mu} = \left\langle x, y \right\rangle c_{\mathfrak{t}}^{\mu} = c_{\mathfrak{t}}^{\mu}.$$

Ainsi, x génère C^{μ} vu en tant que A-module droit. L'élément x étant quelconque, D^{μ} est irréductible dans R et toutes ses extensions, donc D^{μ} est absolument irréductible.

On s'intéresse justement aux modules irréductibles. On va voir qu'on peut en réalité se ramener aux D^{μ} .

Proposition 1.16. Supposons que R soit un corps, et soient $\lambda \in \Lambda, \mu \in \Lambda_0, M$ un sous-module propre de C^{λ} et $\theta : C^{\mu} \to C^{\lambda}/M$ un morphisme de A-modules. Si $\theta \neq 0$, alors $\lambda \geq \mu$.

Preuve. Comme à la proposition précédente, soient $x, y \in C^{\mu}$ tel que $\langle x, y \rangle = 1$, et pour $\mathfrak{t} \in \mathcal{T}(\mu)$, $y_{\mathfrak{t}} = \sum_{\mathfrak{s} \in \mathcal{T}(\mu)} r_{\mathfrak{s}} c_{\mathfrak{s}\mathfrak{t}}^{\mu}$. On a toujours $xy_{\mathfrak{t}} = c_{\mathfrak{t}}^{\mu}$. Par définition, on a $\theta(x) = M + a_{\theta}$ pour un certain $a_{\theta} \in C^{\lambda}$. Il vient alors, pour tout $\mathfrak{t} \in \mathcal{T}(\mu)$:

$$\theta\left(c_{\mathfrak{t}}^{\mu}\right) = \theta\left(xy_{\mathfrak{t}}\right) = \theta(x)y_{\mathfrak{t}} = M + a_{\theta}y_{\mathfrak{t}}.$$

Par le lemme 1.11, si $\theta \neq 0$, alors il existe $\mathfrak{t} \in \mathcal{T}(\mu)$ tel que $ay_{\mathfrak{t}} \neq 0$, donc $\lambda \geq \mu$.

Corollaire 1.17. Supposons que R soit un corps et soient $\lambda, \mu \in \Lambda_0$ tels que $D^{\mu} \cong D^{\lambda}$. Alors $\mu = \lambda$.

Preuve. On a accès à un morphisme de A-modules non nul entre C^{μ} et D^{λ} , donc, par la proposition précédente, $\lambda \geq \mu$. Par symétrie, il vient bien $\lambda = \mu$.

2 Le théorème de Graham-Lehrer

On commence par quelques définitions supplémentaires qui seront utiles dans la preuve du théorème.

Définition 2.1 (Idéal). On appelle $\Gamma \subset \Lambda$ un idéal au sens de la théorie des ordres de Λ si pour tout $\mu \in \Gamma$, si $\lambda > \mu$, alors $\lambda \in \Gamma$.

Définition 2.2 (Sous-module engendré par un idéal). Pour Γ un idéal au sens de la théorie des ordres, on note $A(\Gamma)$ le R-sous-module de A de base $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu}, \mu \in \Gamma, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu)\}$.

Remarque. Dans ces conditions, $A(\Gamma) = \sum_{\mu \in \Gamma} A^{\mu}$, donc $A(\Gamma)$ est un idéal (à droite et à gauche) de A, par le lemme 1.6.

Théorème 2.3 (de GRAHAM-LEHRER). Supposons que R soit un corps. Alors $\{D^{\mu}, \mu \in \Lambda_0\}$ est un ensemble complet de A-modules irréductibles non isomorphes.

Preuve. On s'attarde sur deux lemmes dont on verra l'utilité immédiatement.

Lemme 2.4. Soit $\emptyset = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_k = \Lambda$ une chaîne maximale d'idéaux de Λ . Alors il existe un ordonnement μ_1, \ldots, μ_k de Γ tel que $\Gamma_i = \{\mu_1, \ldots, \mu_i\}$ pour tout $i \in [1, k]$, et tel que :

$$0 = A(\Gamma_0) \hookrightarrow A(\Gamma_1) \hookrightarrow \cdots \hookrightarrow A(\Gamma_k) = A$$

est une filtration de A dont les facteurs sont $A\left(\Gamma_{i}\right)/A\left(\Gamma_{i-1}\right)\cong A^{\mu_{i}}/\hat{A}^{\mu_{i}}$.

Preuve. Comme la chaîne est maximale, pour tout $i \in [1, k]$, $|\Gamma_i \setminus \Gamma_{i-1}| = 1$. En notant $\Gamma_i \setminus \Gamma_{i-1} = \{\mu_i\}$ pour $i \in [1, k]$, on a bien :

si
$$\mu_i > \mu_j$$
, alors $j > i$,

par définition de la chaîne, et $\Gamma_i = \{\mu_1, \dots, \mu_i\}$ pour tout $i \in [1, k]$.

Ainsi, $\hat{A}^{\mu_i} \subseteq A(\Gamma_{i-1})$, et $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu_i} + A(\Gamma_{i-1}), \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(\mu_i)\}$ est une base de l'idéal (à droite et à gauche) $A(\Gamma_i)/A(\Gamma_{i-1})$. L'isomorphisme de (A,A)-bimodules évoqué est donné par l'application R-linéaire déterminée par :

$$\begin{pmatrix} A(\Gamma_i)/A(\Gamma_{i-1}) & \longrightarrow & A^{\mu_i}/\hat{A}^{\mu_i} \\ c^{\mu_i}_{\mathfrak{u}\mathfrak{v}} + A(\Gamma_{i-1}) & \longmapsto & c^{\mu_i}_{\mathfrak{u}\mathfrak{v}} + \hat{A}^{\mu_i} \end{pmatrix},$$

pour $i \in [1, k]$.

^{3.} Dans la "vraie" définition, inspirée des treillis, on demande également à ce que deux éléments de Γ aient toujours un minorant commun dans Γ , mais on ne travaille pas dans le même cadre ici.

Lemme 2.5. Soit λ un élément minimal de Λ . Alors $C^{\lambda} = D^{\lambda}$.

Preuve. Par définition, $C^{\lambda} = D^{\lambda}$ si et seulement si rad $C^{\lambda} = 0$. Soit donc $x \in \operatorname{rad} C^{\lambda}$, montrons que x = 0. On peut l'écrire $x = \sum_{\mathfrak{t} \in \mathcal{T}(\lambda)} r_{\mathfrak{t}} c_{\mathfrak{t}}^{\lambda}$, avec $(r_{\mathfrak{t}}) \in R^{\mathcal{T}(\lambda)}$. Soit $\mathfrak{s} \in \mathcal{T}(\lambda)$, on note $x_{\mathfrak{s}} = 0$.

 $\sum_{\mathfrak{t}\in\mathcal{T}(\lambda)}r_{\mathfrak{t}}c_{\mathfrak{s}\mathfrak{t}}^{\lambda}. \text{ Alors } x_{\mathfrak{s}}\in A^{\lambda}, \text{ et } x_{\mathfrak{s}}\in \hat{A}^{\lambda} \text{ si et seulement si } x=0. \text{ Pour } \mathfrak{u},\mathfrak{v}\in\mathcal{T}(\lambda), \text{ on a, par la définition } 1.12:$

$$x_{\mathfrak{s}}c_{\mathfrak{u}\mathfrak{v}}^{\lambda} = \sum_{\mathfrak{t}\in\mathcal{T}(\lambda)} r_{\mathfrak{t}}c_{\mathfrak{s}\mathfrak{t}}^{\lambda}c_{\mathfrak{u}\mathfrak{v}}^{\lambda} \equiv \sum_{\mathfrak{t}\in\mathcal{T}(\lambda)} r_{\mathfrak{t}}\left\langle c_{\mathfrak{t}}^{\lambda}, c_{\mathfrak{u}}^{\lambda}\right\rangle c_{\mathfrak{s}\mathfrak{v}}^{\lambda} = \left\langle x, c_{\mathfrak{u}}^{\lambda}\right\rangle c_{\mathfrak{s}\mathfrak{v}}^{\lambda} = 0 \mod \hat{A}^{\lambda}.$$

Ainsi, $x_{\mathfrak{s}}a \in \hat{A}^{\lambda}$ pour tout $a \in A^{\lambda}$. De plus, par le lemme 1.6, si $a \in A^{\mu}$ pour $\mu \neq \lambda$, alors $x_{\mathfrak{s}}a \in A^{\lambda} \cap A^{\mu} \subseteq \hat{A}^{\lambda}$, car λ est un élément minimal de Λ . On peut en conclure que $x_{\mathfrak{s}}a \in \hat{A}^{\lambda}$ pour tout $a \in A$. On peut alors conclure en prenant a = 1.

Par la proposition 1.15, si $D^{\mu} \neq 0$, alors D^{μ} est irréductible. Par le corollaire 1.17, pour tout $\lambda, \mu \in \Lambda$, si $\lambda \neq \mu$, alors $D^{\mu} \ncong D^{\lambda}$. De plus, par le lemme 2.4, A possède une filtration dont les facteurs sont les modules cellulaires de A (on peut toujours construire une chaîne maximale d'idéaux). Il suffit donc de montrer que chaque facteur irréductible d'un module cellulaire C^{λ} est isomorphe à un D^{μ} , pour un certain $\mu \in \Lambda_0$.

On raisonne par induction:

- Si λ est un élément minimal de Λ , alors, par le lemme 2.5, $C^{\lambda} = D^{\lambda}$, et $\lambda \in \Lambda_0$.
- Si λ n'est pas minimal, soit D un facteur irréductible de C^{λ} . Alors, soit $D = D^{\lambda}$, soit D est un facteur de rad C^{λ} .

Soit $\Gamma = \{ \nu \in \Lambda, \lambda \not> \nu \}$, alors Γ est un idéal au sens de la théorie des ordres de Λ . Ainsi, $A(\Gamma)$ est un idéal de A. Par la proposition 1.13, $A^{\lambda} \cdot \operatorname{rad} C^{\lambda} = 0$. De plus, par le lemme 1.11 si $\nu \in \Gamma$, $\nu \neq \lambda$, alors $C^{\lambda} \cdot A^{\nu} = 0$. Ainsi, $\operatorname{rad} C^{\lambda} \cdot A(\Gamma) = 0$, donc les facteurs de $\operatorname{rad} C^{\lambda}$ sont des facteurs de $A/A(\Gamma)$.

On peut étendre $\emptyset \subset \Gamma \subset \Lambda$ en une chaîne maximale d'idéaux, et utiliser le lemme 2.4. Cela permet de voir que $A/A(\Gamma)$ possède une filtration dont les facteurs sont isomorphes aux modules cellulaires C^{ν} , avec $\nu \notin \Gamma$, ce qui revient, par définition de Γ , à $\lambda > \nu$. Par induction, les facteur irréductibles de C^{ν} sont isomorphes à des D^{μ} pour des $\mu \in \Lambda_0$, ce qui termine la preuve.

3 Exemple : l'algèbre d'IWAHORI-HECKE du groupe symétrique

On va enfin chercher à construire un exemple plus complexe d'algèbre cellulaire. Cette algèbre intervient dans l'étude des représentations des groupes linéaires définis sur les corps à q éléments, q puissance d'un nombre premier. C'est également un objet d'étude en lui même, comme "déformation" du groupe symétrique, comme on va le voir.

Définition 3.1 (Algèbre d'IWAHORI-HECKE). On appelle algèbre d'IWAHORI-HECKE de \mathfrak{S}_n associée à R et $q \in R$ la R-algèbre $\mathscr{H}_{R,q}(\mathfrak{S}_n)$ dont les générateurs $\{T_i, i \in [\![1,n-1]\!]\}$ vérifient les relations :

$$(T_i - q)(T_i + 1) = 0$$
 pour $i \in [1, n - 1],$
 $T_i T_j = T_j T_i$ pour $1 \le i < j - 1 \le n - 2,$
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ pour $i \in [1, n - 2].$

Remarque. Avec q = 1, l'algèbre est isomorphe à $R\mathfrak{S}_n$, en identifiant les générateurs avec les transpositions $(i \ i + 1)$. On parle de déformation de $R\mathfrak{S}_n$.

Notation. On note, pour tout $i \in [1, n-1]$, $s_i := (i \ i+1)$, et $S := \{s_i, i \in [1, n-1]\}$.

Commençons par donner une base de $\mathcal{H}_{R,q}(\mathfrak{S}_n)$.

Proposition 3.2. Pour $w \in \mathfrak{S}_n$, on note $s_{i_1} \dots s_{i_k}$ une expression réduite (c'est à dire avec $\ell(w) := k$ minimal) de w, et on note :

$$T_w = T_{i_1} \dots T_{i_k}$$
.

Remarque. D'après le théorème de MATSUMOTO⁴, T_w est bien définit : il ne dépend pas du choix de l'expression réduite de w. Si w = Id, on identifie $T_w = 1 = 1_R$.

Pour mieux comprendre l'algèbre, voyons une règle de calcul élémentaire :

Lemme 3.3. Soient $s \in S$ et $w \in \mathfrak{S}_n$. Alors

$$T_w T_s = \begin{cases} T_{ws}, & \text{si } \ell(ws) > \ell(w), \\ q T_{ws} + (q-1)T_w, & \text{si } \ell(ws) < \ell(w). \end{cases}$$

Remarque. Ce lemme provient du lemme suivant, corollaire du théorème de condition d'échange forte :

^{4.} admis ici car trop de théorie est à mettre en place, se prouve grâce à de la combinatoire et aux cocycles de DYER.

Corollaire 3.4. Soit $w \in \mathfrak{S}_n$ et $s \in S$, alors : $\ell(ws) < \ell(w)$ si et seulement si w possède une expression réduite se terminant par s.

Théorème 3.5. L'algèbre $\mathscr{H}_{R,q}(\mathfrak{S}_n)$ est libre comme R-module de base $\{T_w, w \in \mathfrak{S}_n\}$.

Preuve. Par le lemme 3.3, $\{T_w, w \in \mathfrak{S}_n\}$ est bien générateur. Il faut donc montrer que ces éléments sont indépendants. Pour cela, on construit un endomorphisme d'algèbre généré par des éléments satisfaisant les relations dans $\mathscr{H}_{R,q}(\mathfrak{S}_n)$. La preuve est longue et assez technique : une grande partie cherche à montrer qu'elle est bien compatible avec toutes les relations vérifiées par les T_i . Les lecteur-rice-s chevronné-e-s pourront la trouver dans [Mat99].

Corollaire 3.6. L'algèbre $\mathcal{H}_{R,q}(\mathfrak{S}_n)$ possède 2 représentations de dimensions 1 définies par, pour $w \in \mathfrak{S}_n$:

$$1_{\mathscr{H}_{R,q}(\mathfrak{S}_n)}(T_w) = q^{\ell(w)} \text{ et } \varepsilon_{\mathscr{H}_{R,q}(\mathfrak{S}_n)}(T_w) = (-1)^{\ell(w)}.$$

Remarque. Ces deux représentations sont les analogues de la représentation triviale et de la représentations signature.

Corollaire 3.7. Soit $\varphi : \hat{R} \to R$ un morphisme d'anneau et $\hat{q} \in \hat{R}$ et que $\varphi(\hat{q}) = q$. Alors $\mathscr{H}_{R,q}(\mathfrak{S}_n)$ et $\mathscr{H}_{\hat{R},\hat{q}}(\mathfrak{S}_n) \otimes_{\hat{R}} R$ sont isomorphe en tant que R-algèbres.

Preuve. Le produit tensoriel a bien un sens car R peut être considéré comme un \hat{R} -module via l'action $\hat{r} \cdot r = \varphi(\hat{r})r$ pour $\hat{r} \in \hat{r}$ et $r \in R$. Par le théorème 3.5, $\mathscr{H}_{\hat{R},\hat{q}}(\mathfrak{S}_n) \otimes_{\hat{R}} R$ est libre en tant que R-module de base $\{T_i \otimes 1, i \in \llbracket 1, n-1 \rrbracket \}$, qui vérifient les relation de la définition 3.1. On a donc bien accès à un morphisme d'algèbre déterminé par $\begin{pmatrix} \mathscr{H} & \longrightarrow & \mathscr{H}_{\hat{R},\hat{q}}(\mathfrak{S}_n) \otimes_{\hat{R}} R \\ T_i & \longmapsto & T_i \otimes 1 \end{pmatrix}$. Avec cette application, T_w est envoyé sur $T_w \otimes 1$, donc c'est un isomorphisme!

Définition 3.8 (Spécialisation). Dans le cadre du corollaire précédent, on dit que $\mathscr{H}_{R,q}(\mathfrak{S}_n)$ est une spécialisation de $\mathscr{H}_{\hat{R},\hat{q}}(\mathfrak{S}_n)$.

Exemple 3.9. Soit $q \in R^{\times}$. On pose $\Lambda = \{(3), (2, 1), (1^3)\}$ les partitions de 3 et on le munit de l'ordre lexicographique. On note $\mathfrak{s} = \boxed{1 \ 2 \ 3}$, $\mathfrak{t} = \boxed{1 \ 2}$, $\mathfrak{u} = \boxed{1 \ 2}$ et $\mathfrak{v} = \boxed{1 \ 2 \ 3}$, et on pose $\mathcal{T}(3) = \{\mathfrak{s}\}$,

$$\mathcal{T}(2,1) = \{\mathfrak{t},\mathfrak{u}\} \text{ et } \mathcal{T}(1^3) = \{\mathfrak{v}\}, \text{ et enfin : }$$

$$\begin{array}{ll} c_{\mathfrak{s}\mathfrak{s}}^{(3)} &= 1 + T_1 + T_2 + T_1 T_2 + T_2 T_1 + T_1 T_2 T_1, \\ c_{\mathfrak{t}\mathfrak{t}}^{(2,1)} &= 1 + T_1, & c_{\mathfrak{u}\mathfrak{t}}^{(2,1)} &= T_2 (1 + T_1), \\ c_{\mathfrak{t}\mathfrak{u}}^{(2,1)} &= (1 + T_1) T_2, & c_{\mathfrak{u}\mathfrak{u}}^{(2,1)} &= T_2 (1 + T_1) T_2, \\ c_{\mathfrak{v}\mathfrak{v}}^{(1^3)} &= 1. \end{array}$$

On peut vérifier "à la main" (long mais élémentaire) que (\mathscr{C}, Λ) est une base cellulaire de $A = \mathscr{H}_{R,q}(\mathfrak{S}_n)$.

Dans cet exemple, on a:

- $A^{(1^3)} = c_{\mathfrak{v}\mathfrak{v}}^{(1^3)} A$, $\hat{A}^{(1^3)} = \left(\mathscr{C} \setminus \{c_{\mathfrak{v}\mathfrak{v}}^{(1^3)}\} \right) A$, $\left\langle c_{\mathfrak{v}}^{(1^3)}, c_{\mathfrak{v}}^{(1^3)} \right\rangle = 1$ et donc rad $C^{(1^3)} = 0$. Ainsi, $D^{(1^3)} = c_{\mathfrak{v}\mathfrak{v}}^{(1^3)} A / \hat{A}^{(1^3)}$ est irréductible.
- $A^{(3)} = c_{\mathfrak{s}\mathfrak{s}}^{(3)}A$, $\hat{A}^{(3)} = 0$. On peut calculer $\langle c_{\mathfrak{s}}, c_{\mathfrak{s}} \rangle = (1+q)(1+q+q^2)$. Si q est racine du polynôme précédent, $D^{(3)} = 0$, et alors, comme $c_{\mathfrak{s}\mathfrak{s}}^{(3)}A$ est irréductible (car de dimension 1 en tant que A-module), soit $c_{\mathfrak{s}\mathfrak{s}}^{(3)}A \cong D^{(1^3)}$, soit $c_{\mathfrak{s}\mathfrak{s}}^{(3)}A \cong D^{(2,1)}$.

Les choix faits dans cet exemple sont en lien avec le théorème suivant :

Théorème 3.10 (admis). Pour q "proche" de 1, les $\mathscr{H}_{R,q}(\mathfrak{S}_n)$ -modules irréductibles sont en correspondance avec les diagrammes de Young.

Pour en savoir plus, on peut se référer à [Jon87].

Références

- [GL96] J. J. Graham and G. I. Lehrer. Cellular algebras. *Inventiones Mathematicae*, 123(1):1–34, December 1996.
- [Jon87] V. F. R. Jones. Hecke Algebra Representations of Braid Groups and Link Polynomials. The Annals of Mathematics, 126(2):335, September 1987.
- [Mat99] Andrew Mathas. Iwahori-Hecke algebras and Schur algebras of the symmetric group. Number v. 15 in University lecture series. American Mathematical Society, Providence, R.I, 1999.